待得的英文译语怎么说-七中实验学校
2023年3月30日发(作者:漂亮男人收视率)
RetardedPotentialsandRadiation
Initialquestion:Whyareparticlecollidersthatinvolveprotonslargecircles,whereas
thosethatinvolveelectronsarestraightlines?
No,thisisn’taboutpotentialsthatwereheldbackagrade:).Retardedpotentialsare
neededbecauseatagivenlocationinspace,aparticle“feels”thefieldsorpotentialsof
othercharges,notwherethosechargesarenow,butwheretheywerealighttraveltime
cturesagowetalkedabouthowelectromagnetismcanbephrasedintermsof
potentialsratherthanfiss:ifyouhaveasinglechargeeadistanceraway
fromagivenpoint,whatistheelectrostaticpotentialthere,ignoringlighttraveltimes?
It’sjust=e/,generalizing,supposeonehadlotsof(static!)chargesatdifferent
ss:howthenwouldyoufindthepotential?It’sadditive,sothetotal
potentialwouldbe
=i
e
i
/r
i
,(1)
whereeachsourcehaschargee
i
andisadistancer
i
,
supposethatyouhadabunchofmovingchargese
i
.Ifyoupickaparticulartimetandyou
knowthatforeachparticlethedistancewasrret
i
(t)alighttraveltimeago,Askclass:what
willthepotentialbethen?
=i
e
i
/rret
i
(t).(2)
Notethatmoredistantchargeswillhavehadalongerlighttraveltimethannearercharges,
kethisformulaand
writeitforacontinuouschargedensity,thenthescalarpotentialatatimetandlocation
risthen
(r,t)=[]d3r′
|r−r′|
(3)
wherethebracketsmeantoevaluatethequantityattheretardedtime:
[Q]=Qr′,t−
1
c
|r−r′|.(4)
Notethatherewe’veshiftedthingsslightly:insteadoffollowingindividualcharges,we’re
evaluatingthepotentialfromfixedpointsinspace,butallowingthechargedensityto
ntstothesamething.
Onecangothroughanidenticalprocedureforthevectorpotential:
A(r,t)=
1
c[j]d3r′
|r−r′|
.(5)
Rememberthatthepotentialshavegaugefreedom,soinwritingandAthiswaywe’ve
chosenaparticulargauge,inthiscasetheLorentzgauge,inwhich
∇A+
1
c
∂/∂t=0.(6)
That’snobigdealinmostcircumstance程门立雪的道理 s,butit’sgoodtobeclear.
Aspecificcharge“distribution”thatonecanimagineisthatofasinglecharge(!).If
ithaschargeqandmovesalongatrajectoryr0(t),sothatitsvelocityisu(t)=
r(t),then
wecancongratulateourselvesonbeingcoolbywritingthechargeandcurrentdensitiesin
termsofDiracdeltafunctions:
(r,t)=q(r−r0(t)),
j(r,t)=qu(t)(r−r0(t)).
(7)
ankabit(see3.1ofRybickiandLightman)wegettheLienard-Wiechart
potentials
=q
R
A=qu
cR.
(8)
Herethebracketsmeananevaluationattheretardedtime,and(t′)≡1−n(t′)u(t′)/c,
wheren=R/factorismighty
hargeisn’tmoving,u=0,thewholethingisjust1andyougetthe
potentialsyouexpectfromelectrostatics(A=0,=q/R).Ontheotherhand,forspeeds
closetothespeedoflightthisfactorproducesstron霏组词 gintensityinthedirectionofmotionof
,abeamingeffect.
rememberthatthePoyntingfluxcarried
byanelectromagneticfieldisS=c
4
Eorget,rememberthat(asidefromthe
1/4factor)youcangetthisjustfromunits,ifyourememberthatB2andE2haveunits
,ss:whatare
andA?isjustthesumofq
i
/R
i
evaluatedatthecharges’currentposition(sincethey
aren’tmoving),andA=0becausethechargesarefixed(nocurrent).Askclass:so,what
isSinthatcase?Zero,cchargedistributionhasnoflux.
lessclearisthatit’sthe
differentiatethepotentialstogetthefields(RL
saythatthisis“straightforwardbutlengthy”,alwaysawarningthatyoumaybeinfor
analgebraicchallenge).Onethenendsup(3.2inRL)withanelectricfieldthatcanbe
writtenasthesumoftwoterms:onethatdoesnotdependontheacceleration
(where
=u/c),ss:whichofthesetermsdotheyexpectwillproduce
radiation?Fromtheargumentsweusedafewclassesago,itmustbetheoneproportional
cchargedistributionemitsnoradiation,soachargeatconstant
velocitycan’teither(sinceyoucouldtransformtoaframeinwhichitisstatic).
Nowaninterestingthingistolookattheradiusdependencesofthetwotermsforthe
electricfield(andthecorrespondingmagneticfield,whichisjustB(r,t)=[nE(r,t)]).
The“velocityfield”termisproportionalto1/R2,whereasthe“radiationfield”termis
proportionalto1/nsiderjustthevelocityfieldthenthefluxS∝EB∝1/R4,
meaningthatwhenoneintegratedoverasphereatlargeradiusthenetfluxwouldbe
∝1/R2,sothesystemwouldn’tradiatetoinfiiationfieldisnecessaryfor
radiation,record,theradiationfieldis
Erad(r,t)=
q
cn
3R
(n−)
.(9)
NotethatE⊥n,soBrad=nrtherecord,the
velocityfieldis
Evel(r,t)=q(n−)(1−2)
3R2.(10)
Thereasontowritetheseissothatwecanunderstandtheminsomelimits.
Let’strythelimitofsmall,≪ss:at
largedistances,whichcomponentofEdotheyexpectwilldominate?Theradiationfield.
Askclass:bywhatpowerofR?’sseeifthisisvalidbycomparing
themagnitudesofthevelocityandradiationfiss:ignoringcrossproductsand
othercomplications,whatisthemagnitudeofthevelocityfieldtolowestorderin?It’s
Evel≈q/(3R2).Notethatfor≪1,≈1,sothisreducestothestandardelectricfield
ss:tolowestorderin,whatisthemagnitudeof
theradiationfield?It’sErad≈(q/c)
/(3R).Takingtheratioandwriting
=u/c,we
have
Erad/Evel≈Ru/c2.(11)
,theratioincreaseslikethefirstpowerof
R,,whenthereisnoaccelerationthereisnoradiation(we’veseenthis
severaltimesbefore,butit’salwaysgoodtocheck).Third,ifthespeedoflightwereinfinite
inforcesthatradiationisfundamentallyarelativistic
effect,etsomefurtherunderstandingbyassuming
thattheparticlehassomecharacteristicfrequencyofoscillation,sothatu≈u=uc/.
Inthatcase,
Erad/Evel≈(u/c)(R/).(12)
It’softengoodtoexpressadimensionlessratioastheproductofdimensionlessratios,so
ysthatinthe“nearzone”,R<,
thevelocityfielddominatesbyafactor>c/“farzone”,R≫(c/u),theradiation
fielddominates.
Wecannowusethistogetahandleonthesimplesttypeofradiation:Larmor’sformula
imit≪1,anangle
fromthedirectionofaccelerationthemagnitudesoftheelectricandmagneticradiation
fieldsareErad=Brad=(qu/Rc2)sin.Askclass:howcanweusethistocomputethe
energyflux?ThePoyntingfluxisS=(c/4)E2
rad
inthiscase(becausetheelectricand
magneticfieldmagnitudesareequal).Ifweconsidertheenergypertimeemittedintoa
solidangledΩatradiusR,thentheareaatthatsolidangleisR2dΩ,sowehave
dW
dtdΩ
=
q2u2
4c3
sin2.(13)
Togetthetotalpowerweintegrateoversolidangles,whichgivesustheLarmorformula:
P=2q2u2/3c3.(14)
Again,let’slookatthisequationtoseeifitsatisfiermustbe
proportionaltoanevenpowerofthecharge,sincethesigndoesn’not
dependonthevelocity,butrathertheacceleration,andagainthesigncan’tmattersoit
(asalways!)thisisarelativistic
effect,ifc→∞seintuitiveconditionsaresatisfiedbythis
,theradiationisinatypicaldipole
pattern,proportionaltosin2;thismeansthatnoradiationisemittedalongthedirection
,theinstantaneousdirectionofEradisdeterminedbyboth
uand
icular,forlinearaccelerationtheradiationwillbe100%linearlypolarizedinthe
planeof
uandn(theselasttwopointsaretakendirectlyfromRybickiandLightman).
Bytheway,ingtothis
formula,anelectro三秋桂子 十里荷花 ncirclingaroundaprotonwouldemitenergycontinuouslyandinan
acceleratingway,sincesoneofthecontradictions
thathelpedspurthedevelopmentofquantummechanics.
Whatifwehaveabunchofparticles?Ingeneral,itbecomesalottougherbecauseall
thedifferentparticleswillhavedifftherway,ifwe’reworried
aboutaparticularfrequencycomponentoftheradiation,wehavetokeeptrackofphase
ss:cantheythinkofacircumstancein
whichthephaserelationsareclos红楼风月梦 eenoughtoconstantthatthiscanbesimplified?One
wayisifthefrequencyofinterestismuchlowerthanc/L,whereListhecharacteristic
,thedifferencesinretardedtimeamounttojustasmall
ataparticularexampleofthisisthatiftheparticlesaremoving
nonrelativistically,u≪c,thenthecharacteristicfrequencyoftheirmovementacrossthe
region,u/L,ismuchlessthanc/ansthatfornonrelativisticmotionwecan
,theradiationfieldis
Erad=i
q
i
c2
n(n
u
i
)
R
i
,(15)
inkaboutanobservationpointveryfarfromthesources,
thenthedifferencesindistancesarenegligibleandwecantakesomeR0ascharacteristicof
ad≈n(n
d)/c2R0,wherewehavedefinedthedipolemoment
asd≡i
q
i
r
i
.InananalogouswaytotheLarmorformulaforasinglecharge’spower,the
radiationpowerisP=2
d2/3c3inthisapproximation.
example,inNewtoniangravityyouca沁园春雪课件ppt nestimatethepotentialaroundamassdistribution
byexpandingitinpowersofthedistance,wherethefirsttermisthatofapointmassatthe
centerofmass,’ssimilarhere,withthecaveat
kgoesintoa
littlemoredetailaboutgeneralmultipolarexpansions.
nacceleratedparticle
radiates,itcarriesawayenergy,linearmomentum,ans
thatthemotionoftheparticleitselfmustbemodifietanapproximateideaof
whatthismodificationdoesbytreatingitasanextraforce,theforceofradiationreaction.
First,though,let’sfigureoutunderwhatcircumstancestheforcecanbetreatedasa
etheparticlehasaspeed书院二小松阅读答案 u,soitskineticenergyis∼om
theLarmorformulathetimeinwhichthekineticenergyischangedsubstantiallyis
T∼mu2/P∼(3mc3/2e2)(u/u)2.(16)
Let’sestimateatypicalo在线电子新华字典 rbitaltimefortheparticleoft
p
∼u/rtheenergylostin
anorbitalperiodtobesmall,T/t
p
≫1,ort
p
≫≡2e2/3mc3≈10−23s(!).That’samighty
outthetimenecessaryforlighttotraveladistanceequaltotheclassical
electronradius2.810−,tofigureouttheforceourfirstinclinationwouldbe
tosettheforcetimesthevelocityequaltothepowerradiated,Fradu=−2e2u2/
problemisthat(1)Fradcan’tdependonusincethatwouldimplyapreferredframe,so
(2)onesideofthisequationdependsonuwhiletheotherdoesn’t!d,wecan
seeifthiscanbesatisfiedinatime-averagedsense.
−t
2
t
1
Fradudt=(2e2/3c3)t
2
t
1
u
udt
=(2e2/3c3)
uu
t
2
t
1
−t
2
t
1
uudt.
(17)
sumethatthemotionorperiodic,or
atleastthat
uuisthesameatt2asatt1,thenthefirsttermontherighthandside
vanishesandwefindthatFrad=m
’sallverywell,butas
ss:whatdoesthissayabout
aparticlewithconstantlinearacceleration?Then
u=0,soitwouldimplynoradiation
reactionforce,eventhoughtheparticledoesradiate(sinceitisaccelerated).Theproblemis
thatthentheexpressionatthelimitsdoesn’tvanish,
mostcases,though,itisifyouaverageoveralongenoughtimeandthemotionisbounded.
Ifyouputthisintoagrandequationofmotionitreads
m(
u−
u)=F(18)
mallydoesn’tencounter
emonecanencounterinsuchcasesisspurious
mple,supposeF==constantisobviouslyasolution,but
soisu=u0exp(t/),
casesonemus
mathematicalreasonisthat
uu(t1)=
uu(t2),soinfacttheradiationreactionforce
wouldhaveadiffetobecarefulincaseslikethis.
RecommendedRybickiandLightmanproblem:3.1
更多推荐
retarded是什么意思arded在线翻译读音例
发布评论