2024年1月10日发(作者:六上期末数学试卷2023)
第八章
一:不定积分概念与基本积分公式(教材上册P181)
1. 验证下列(1)、(2)等式并与(3)、(4)两试相比照:
(1)
f\'(x)dxf(x)c; (2)
df(x)f(x)c;
(3)
[f(x)dx]\'f(x); (4)
df(x)d(x)f(x)dx;
解: (1)
c\'0(f(x)c)\'f\'(x)cf\'(x)
f\'(x)dxf(x)c与(3)相比(1)试求不定积分运算,(2)是求导运算,(1) (3)互为逆运算,不定积分相差一个常数但仍为原不定积分,该常数用c表示,称为积分常数.
(2)
df(x)f\'(x)dxdf(x)f\'(x)dxf(x)c不含积分常数.
与(4)相比: (2)是先求导再积分,因此包含了一个积分常数,(4)是先积分再求导,因此右侧2. 求一曲线y=f (x),使得在曲线上的每一点(x,y)处的切线斜率为2x,且通过点(2,5).
解:
dy2xdxydy2xdxx2c2
将(x,y)=(2,5)代入得: 5=2+c
C=1
该曲线为yx1
2x2sgnx是|x|在(,)上的一个原函数. 3. 验证y2解:
x2x>0时,y’=()\'x|x|
2x2x<0时,y\'()\'x|x|
2x2x2sgnx022limx0 x=0时,y\'limlimx0x0xx02x0x2sgnx0x2
y\'2limlim()0|x|
x0x0x02因此y\'y\'y\'0|x|
x2综上得y\'(sgnx)\'|x|,x(,)
2x2ysgnx是|x|在(,)上的一个原函数.
24. 据理说明为什么每一个含有第一类间断点的函数都没有原函数?
解: 设x0是f (x)的第一类间断点,且f (x)在U(x0)上有原函数F (x),则F\'(x)f(x),xU(x0).从而由导数极限定理得
f(x)limF\'(x)F\'(x0)f(x0)
limxx0xx0f(x)F\'(x0)f(x0).可见f(x)x0点连续,推出矛盾.
同理
limxx0
二: 换元积分法与部分积分法(教材上册P188)
1. 应用换元积分法求下列积分
(1)
(3)
(5)
cos(3x4)dx; (2)
13x2113x22xxedx;
2dxn; (4)
(1x)dx;
2x1()dx; (6)
22x3dx;
(7)
83xdx; (8)
dx
375x
(9)
xsin(2x)4dxdx(11)
; (12)
;
1cosx1sinx22xsinxdx; (10)
dx;
(13)
cscxdx; (14)
x4x4dx; (16)
x1x2dx;
(15)
dxxlnx;
x3x82dx;
x4dx; (18) (17)
(1x5)3(19)
dxx(1x); (20)
cotxdx;
5cosxdx; (22) (21)
(23)
dxexexdxsinxcosx;
2x3; (24)
2dx;
x3x8x22dx; (26) (25)
5(x1)dxxa22(a>0);
dx(a0); (28) (27)
2(xa2)3/2(29)
x51x2dx;
1x3xdx (30)t3x4x11dx.
x11解: (1)
cos(3x4)dxt2x2t
cosd3
11sintcsin(3x4)c
33(2)
xe2x21t1tdx()2e\'d()2
221t1t1t1t22()d()etdt
()e222241t12ece2xc
44dxt2x11t11dln|t|cln|2x1|c (3)2x1t222
tn1(1x)n1cc (4)①当n1时,(1x)dxtdtn1n1ntx1n②当n1时,(1x)dxln|1x|c
n(5)(13x2113x2)dxx1d(3x)3
2x31(3x)1()23dx1arcsin3xc
33
arcsin(6)22x3t12t122x3122x3dx2dccc
22ln22ln22ln2t2x3tt83x(7)3t222232283xdxtd()tdttc(83x)2c
3399t375xdx(8)375x21t33323d()tdttc(75x)2/3c
t55111(9)xsinxdxtsintdttsintt2dtsintdt
22tx2
11costccosx2c
22t2x4(10)dxxsin2(2x)411cottccot(2x)c
2t224sintd21dxt2xd(2t)1x2(11)2dtsectdttantctan()c
21cosx1cos2t2cost2dx1sinx(12)
dx(sec2xsecxtanx)dxtanxsecxc
21sinxcosx111(13)cscxdx
dxdxxxxsinx2xαsincostancos2222xdtan2ln|tanx|c
x2tan2(14)x1x2dx11d(1x2)1x2c
21x2
x1dx(15)4x441x21x2d()arctan()c
x222421()2dxtlnx1t1(16)tdedtln|t|cln|lnx|c
xlnxettx41111155dxdxd(1x)(1x5)2c (17)535353(1x)5(1x)5(1x)10x3112dx8dx4(18)8x24x28x411x422|c
dln|8xx41621122(19)dx11x()dxln|x|ln|1x|cln||c
x(1x)x1x1x(20)cotxdxcosxsinxdxln|t|cln|sinx|c
(21)cos5xdx(1sin2x)2dsinx(12sin2xsin4x)dsinx
sin5x23sinxsinxc
53(22)dxcosxdxdtanxsinxcosxsinxcos2xtanxln|tanx|c
dxexdexdxarctanexc (23)xxx2x2ee1(e)1(e)2x3d(x23x8)dx2ln(x23x8)c (24)2x3x8x3x8tx1(t1)22x22t22t3123dxdtdt((25)t3t3tt2t3)dt
(x1)5
ln|t|23223tcln|x1|(x1)2c
t2x12xd()atxa(26)dxx2a21x()21a1t21dtln|tt21|c1
ln|xx()21|c1ln|xa2b2|c
aa
(27)令xatan,2t2asectdt
dxasec2t11xdtcottdtsintcc
223/23322322(xa)asectaaaax(28)sin5dxdsin(cos42cos21)dcos
cos1x2xsinx5312153222
coscoscosc(1x)1xc
535t3t26t2456(29)dx6tdt6tdt6tdt6tdt
22231t1t1t1xx
ttdt6tdt6tdt6dt6
t67642t1t2dt
677651tt2t36tln||c
51t56121616
661xxx2x6x3ln||c
1751x6(30)x11t1tx11dx2tdt
t1x11
2(t2t2)dtt24t4ln|t1|c
t1
x141x4ln|1x1|c
x41x4ln|1x1|c\'
2. 应用分部积分法求下列不定积分
(1)
(3)
(5)
(7)
(9)
arcsinxdx; (2)
lnxdx;
2xcosxdx; (4)
lnxx3dx;
2(lnx)dx; (6)
xarctanxdx;
a2b2dx(a0).
[ln(lnx)1]dx; (8)
(arcsinx)2dx
lnxsec3xdx; (10)
解 (1)arcsinxdxxarcsinxxdarcsinxxarcsinxxdx
1x
xarcsinx(1x)c
(2)lnxdxxlnxxdlnxxlnxx1221dxxlnxxc
x(3)x2cosxdxx2sinx2xsinxdxx2sinx2xdcosx
x2sinx2xcosx2cosxdx
xsinx2xcosx2sinxc
2lnx112dxlnxdx[lnxx2x2d(lnx)]
x322lnx11
22c2(lnx1)c
2x4x4x1222(5)(lnx)dxx(lnx)x2lnxdxx(lnx)2lnxdx(参考(2)结果)
x(4)
x(lnx)2xlnx2xc
21121x22dx (6)xarctanxdxarctanxdxxarctanx2221x212111xarctanxdxdx
22221x1211
xarctanxxarctanxc
22211111(7)[ln(lnx)]dxln(lnx)dxdxxln(lnx)xdxdx
lnxlnxlnxxlnx
xln(lnx)c
(8)
(arcsinx)dxx(arcsin)x2arcsinx(1x)222212dx
x(arxsinx)arcsinx(1x)d(1x2)
212
x(arcsinx)2arcsinxd(1x)
x(arcsinx)2(1x)arcsinx2dx
x(arcsinx)2(1x)arcsinx2xc
(9) 令Isec3xdx
212221222122
Isecxdtanxsecxtanxtanxsecxtanxdx
secxtanx(1cos2x)sec3xdxsecxtanxIsecxdx
11Isecxtanxsecxdx
221
(secxtanxln|secxtanx|)c
2
(10)Iabdx(a0)x(xa)1222222122xdxx(ax)21222122x2a2a2xa22dx
x(xa)Ia221x2a2dxx(xa)Ia2xd()
ax()21a1111222则Ix(xa)a2221x1d()(xx2a2a2ln|a2x2x|)c
a2x()21a3. 求下列不定积分
(1)[f(x)]f(x)\'dx(1); (2)f\'(x)1[f(x)]2dx;
(3)f\'(x)dx; (4)ef(x)f\'(x)dx.
f(x)解: (1)[f(x)]f(x)\'dx[f(x)]df(x)1[f(x)]1c
1(2)f\'(x)1dx1[f(x)]21[f(x)]2df(x)arctan[f(x)]c(arccot[f(x)]c1)
(3)f\'(x)1dxdf(x)ln|f(x)|c
f(x)f(x)f(x)(4)e
f\'(x)dxef(x)df(x)ef(x)c
三. 有理函数和可化为有理函数的不定积分(教材上册P198)
1. 求下列不定积分
x3x2dx; (2)2dx; (1)x1x7x12
(3)dxdx; (4)1x31x4;
dxx2; (6)(x1)(x21)2(2x22x1)2dx; (5)x3x3111x2x1解: (1)
x1x1x1x3113122dx(xx1)dxxxxln|x1|c
x1x132(2)x2x2x3111
x27x12(x3)(x4)(x3)(x4)x4(x3)(x4)x211dxd(x4)x27x12x4x27x12dx
11d(x4)2x4(2x7)2d(2x7)
2ln|x4|ln|x3|c
(3)设1ABxC
x31x1x2x12则1A(xx1)(BxC)(x1)
(AB)x(BCA)xAC,
则比较两端系数,得B,C21321,A
33dx11x2dx
21x33x1xx12x11112x1312x13d(x1)d()d()
2x12x13x13(3(33)21)21331(1x)212x1arctanc
ln26xx133
11d(d(x)2x11xdxx(4)4dx1112x122x2(x)2xxxx)21(22x11x)2
1arctan(2x1x)c
1211122x11x2x21xxx41dx21dx21222ln|x2x21|c
x2(x)2xx2111x211x31dx4dx4dx
则1x42x12x122x2x2x21
arctanln|2|c
241x8xx21(5)设B1xC1B2xC21A2
2222(x1)(x1)x1x1(x1)222则1A(x1)(B1xC1)(x1)(x1)(B2xC2)(x1)
(AB1)x4(C1B1)x3(2AC1B1B2)x2(C1C2B1B2)x(AC1C2)
比较两边系数得到A11111,B,C1,B2,C2
44422dx1111112d(x1)d(x1)dx
(x1)(x21)24x18x214x2111112d(x1)dx
22224(x1)2(x1)1x11dxdx
(x21)22(x21)2x21dx1111221ln|x1|ln(x1)arctanx(x1)
22(x1)(x1)48241x(x21)1c
4
(6)x21x25dxdxdx
2222(2x22x1)24(2x2x1)2(2x2x1)由课本P193页逆推公式得
14dx1d(2x1)2[(2x1)21][(2x1)21]2[1(2x1)2]2
x2dx
22(2x2x1)1152x15arctan(2x1)c
2(2x1)2142x22x125x35arctan(2x1)c
22(2x2x1)2
2.求下列不定积分
(1)dx53cosx; (2)
dx2sin2x;
dxx2(3); (4)dx;
21tanx1xx(5)dxx2x; (6)11xx21xdx.
1t22x,dxdt,于是有
解: (1)令ttan,则cosx1t21t22dx53cosx121dt14t2dt
1t21t2531t2
1111xd2tarctan(2t)carctan(2tan)c
221(2t)222dxsec2xdxd(tanx)(2)
22222sinx2secxtanx3tanx2
663tanx662arctan(tanx)c
3622tanx12d
dxcosx1cosxsinxsinxcosxdxdx
1tanxcosxsinx2cosxsinx1d(cosxsinx)1
[dx](xln|cosxsinx|)c
2cosxsinx2(3)(4)设x155sint,则dxcostdt
222x21xx2dx15dx(sint)2dt
2251(x)2421455755sint(cos2t)]dttcostsin2tc
288216x2
[
72x12x3arcsin1xx2c
845(5)令x111sect,t,dxsecttantdt
22222dxsecdtln|secttant|c
11(x)2()222dxx2x
ln|(2x1)2x2x|c
1x1t24txdx(6)令t,则
1x1t2(1t2)2dt11x(1t2)244t2x21xdx(1t2)2t[(1t2)2]dt(1t2)2dt
d(1t2)12tdt2td2
2t1t2t211t2
(1t2)2
2t1tln||c
t211t1x211x2ln||c
xx
更多推荐
常数,积分法,说明
发布评论