2023年12月2日发(作者:湖南今年高考数学试卷题目)
安徽省2019年初中学业水平考试中考数学真题试卷(含答案)
数 学 (试题卷)
注意事项:
1.你拿到的试卷满分为150分,考试时间为120分钟。
2.试卷包括”试题卷“和“答题卷”两部分,“试题卷”共4页,“答题卷“共6页;
3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的;
4.考试结束后,请将”试题卷”和“答题卷”一井交回。
一、选择题(本大题共10小题,每小题4分,满分40分) 每小超都给出A,B,C,D 四个选项,其中只有一个是正确的。
1.8-的绝对值是( )
A.-8
B.8
C.±8
D.
2.2017年我赛粮食总产量为635.2亿斤,其中635.2亿科学记数法表示( )
3.下列运算正确的是( ) A.()
4.一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为( )
5.下列分解因式正确的是( ) 6. 据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a 万件和b 万件,则( )
7. 若关于x 的一元二次方程x (x +1)+ax =0有两个相等的实数根,则实数a 的值为( )
A. 1- B.1 C.2或-2 D.1或-3
8. 为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:
类于以上数据,说法正确的是( )
A.甲、乙的众数相同
B.甲、乙的中位数相同
C.甲的平均数小于乙的平均数
D.甲的方差小于乙的方差
9.□ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得出四边形AECF 一定为平行四边形的是( )
=DF
=CF
//C E
D.∠BAE =∠DCF
10.如图,直线21l l 、都与直线l 垂直,垂足分别为M,N,MN =1正方形ABCD 的边长为3,对角线AC 在直线l 上,且点C 位于点M 处,将正方形ABCD 沿l 向右平移,直到点A 与点N 重合为止,记点C 平移的距离为x ,正方形ABCD 的边位于21l l 、之间分的长度和为y ,则y 关于x 的函数图象太致为( ) 二、填空题(本大共4小题,每小题5分,满分30分)
11. 不等式>的解集是 。
12. 如图,菱形ABOC 的AB ,AC 分别与⊙O 相切于点D,E 若点D 是AB 的中点,则 ∠DOE 。
13. 如图,正比例函数y=kx 与反比例函数y =的图象有一个交点A (2,m ),AB ⊥x 轴于点B , 平移直线y=k ,使其经过点B ,得到直线l ,则直线l 对应的函数表达式是 。 14.矩形ABCD 中,AB =6,BC =8.点P 在矩形ABCD 的内部,点E 在边BC 上,满足△PBE ∽△DBC ,若△APD 是等腰三角形,则PE 的长为数 。
三、(本大题共2小题,每小题8分,满分16分)
14. 计算:
16.《孙子算经》中有过样一道题,原文如下:
“今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?” 大意为:
今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问城中有多少户人家? 请解答上述问题。
四、(本大题共2小题,每小题8分,满分16分) 17.如图,在由边长为1个单位长度的小正方形组成的10×10网格中, 已知点O,A,B 均为网格线的交点.
(1)在给定的网格中,以点O 为位似中心,将线段AB 放大为原来的2倍,得到线段11B
A (点A,B 的对应点分别为11B A 、).画出线段11B A ; (2)将线段11B A 绕点1B 逆时针旋转90°得到线段12B A .画出线段12B A ; (3)以211A B A A 、、、为顶点的四边形211A B AA 的面积是个平方单位.
18. 观察以下等式:
……
按照以上规律,解决下列问题:
(1)写出第6个等式: ;
(2)写出你猜想的第n 个等式: (用含n 的等式表示),并证明.
五、(本大题共2小题,每小题10分,满分20分) 19.为了测量竖直旗杆AB 的高度,某综合实践小组在地面D 处竖直放置标杆CD ,并在地面上水平放置个平面镜E ,使得B,E,D 在同一水平线上,如图所示.该小组在标杆的F 处通过平面镜E 恰好观测到旗杆顶A (此时∠AE B =∠FED ).在F 处测得旗杆顶A 的仰角为39.3°,平面镜E 的俯角为45°,FD =1.8米,问旗杆AB 的高度约为多少米? (结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)
20.如图,⊙O为锐角△ABC的外接圆,半径为5.
(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧BC
的交点E(保留作图痕迹,不写作法);
(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.
六、{本题满分12分)
21.“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图部分信息如下: (1)本次比赛参赛选手共有人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为;
(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;
(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.
七、(本题满分12分)
22.小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:
①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.
小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元)
(1)用含x的代数式分别表示W1,W2;
(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?
八、(本题满分14分)
23.如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E,点M为BD中点,CM的延长线交AB于点F.
(1)求证:CM=EM;
(2)若∠BAC=50°,求∠EMF的大小;
(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM. 参考答案
1-5 DCDAC 6-10 BADBA
11.x >10 12.60° 13.y=3/2x-3 14.3或1.2 15.原式=1+2+4=7
16.设城中有x 户人家,由题意得 x+x/3=100 解得x=75
答:城中有75户人家。 17. (1)(2)画图略 (3)20
右边=1 ∴左边=右边 ∴原等式成立
19. ∵∠DEF=∠BEA=45° ∴∠FEA=45°
在Rt △FEA 中,EF=2FD ,AE=2AB
∴tan ∠AFE=EF AE =FD AB
∴AB=FD ×tan ∠AFE=1.8×10.02≈18 答:旗杆AB 高约18米。 20. (1)画图略 (2)∵AE 平分∠BAC ∴弧BE=弧EC ,连接OE
则OE ⊥BC 于点F ,EF=3 连接OC 、EC
在Rt △OFC 中,由勾股定理可得FC=21 在Rt △EFC 中,由勾股定理可得CE=30 21.
(1)50,30%
(2)不能;由统计图知,79.5~89.5和89.5~99.5两组占参赛选手60%,而78<79.5,所以他不能获奖。
(3)由题意得树状图如下
由树状图知,共有12种等可能结果,其中恰好选中1男1女的8结果共有种, 故P=128=32
∴MC=ME
(2)∵∠BAC=50° ∴∠ADE=40° ∵CM=MB ∴∠MCB=∠CBM
∴∠CMD=∠MCB+∠CBM=2∠CBM 同理,∠DME=2∠EBM
∴∠CME=2∠CBA=80° ∴∠EMF=180°-80°=100° (3)同(2)中理可得∠CBA=45° ∴∠CAB=∠ADE=45° ∵△DAE ≌△CEM
∴DE=CM=ME=21
BD=DM ,∠ECM=45°
∴△DEM 等边 ∴∠EDM=60° ∴∠MBE=30° ∵∠MCB+∠ACE=45° ∠CBM+∠MBE=45°
∴∠ACE=∠MBE=30° ∴∠ACM=∠ACE+∠ECM=75° 连接AM ,∵AE=EM=MB ∴∠MEB=∠EBM=30°
∠AME=21
∠MEB=15°
∵∠CME=90°
∴∠CMA=90°-15°=75°=∠ACM ∴AC=AM ∵N 为CM 中点 ∴AN ⊥CM ∵CM ⊥EM ∴AN ∥CM
更多推荐
盆景,获奖,表示
发布评论