2024年3月31日发(作者:数学试卷高分高中)

初中数学核心考点

数学是人类对事物的抽象结构与模式进行严格描写的一种通用手段,可以运用

于现实世界的任何问题,所有的数学对象本质上都是人为定义的。数学属于情

势科学,而不是自然科学。今天作者在这给大家整理了一些初中数学核心考

点,我们一起来看看吧!

初中数学核心考点

代数式

1、代数式与有理式

用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数

或字母也是代数式。

整式和分式统称为有理式。

2、整式和分式

含有加、减、乘、除、乘方运算的代数式叫做有理式。

没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

有除法运算并且除式中含有字母的有理式叫做分式。

3、单项式与多项式

没有加减运算的整式叫做单项式。(数字与字母的积-包括单独的一个数或字母)

几个单项式的和,叫做多项式。

说明:

①根据除式中有否字母,将整式和分式区分开;根据整式中有否加减运算,把单

项式、多项式区分开。

②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对

象。

4、同类项及其合并

条件:①字母相同;②相同字母的指数相同

合并根据:乘法分配律。

5、根式

表示方根的代数式叫做根式。

含有关于字母开方运算的代数式叫做无理式。

6、同类二次根式、最简二次根式、分母有理化

化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。

满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽

方的因数或因式。

把分母中的根号划去叫做分母有理化。

初中数学考点总结

二元一次方程组

1、定义:含有两个未知数,并且未知项的次数是1的整式方程叫做二元一次方

程。

2、二元一次方程组的解法

(1)代入法

由一个二次方程和一个一次方程所组成的方程组通常用代入法来解,这是基本

的消元降次方法。

(2)因式分解法

在二元二次方程组中,至少有一个方程可以分解时,可采取因式分解法通过消

元降次来解。

(3)配方法

将一个式子,或一个式子的某一部分通过恒等变形化为完全平方式或几个完全

平方式的和。

(4)韦达定理法

通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。

(5)消常数项法

当方程组的两个方程都缺一次项时,可用消去常数项的方法解。

解一元二次方程

解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。

1、直接开平方法:

用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±m.

直接开平方法就是平方的逆运算.通常用根号表示其运算结果.

2、配方法

通过配成完全平方式的方法,得到一元二次方程的根的方法。这种解一元二次

方程的方法称为配方法,配方的根据是完全平方公式。

(1)转化:将此一元二次方程化为ax^2+bx+c=0的情势(即一元二次方程的一样

情势)

(2)系数化1:将二次项系数化为1

(3)移项:将常数项移到等号右侧

(4)配方:等号左右两边同时加上一次项系数一半的平方

(5)变形:将等号左边的代数式写成完全平方情势

(6)开方:左右同时开平方

(7)求解:整理即可得到原方程的根

3、公式法

公式法:把一元二次方程化成一样情势,然后运算判别式△=b2-4ac的值,当

b2-4ac≥0时,把各项系数a,b,c的值代入求根公式x=(b2-4ac≥0)就可得到方程

的根。

初中数学考点

1.数的分类及概念数系表:

说明:分类的原则:1)相称(不重、不漏)2)有标准

2.非负数:正实数与零的统称。(表为:x0)

性质:若干个非负数的和为0,则每个非负数均为0。

3.倒数:

①定义及表示法

②性质:A.a1/a(a1);B.1/a中,aC.0

4.相反数:

①定义及表示法

②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。

5.数轴:

①定义(三要素)

②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的

一一对应关系。

6.奇数、偶数、质数、合数(正整数自然数)

定义及表示:

奇数:2n-1

偶数:2n(n为自然数)

7.绝对值:

①定义(两种):

代数定义:

几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的

距离。

②│a│0,符号││是非负数的标志;

③数a的绝对值只有一个;

④处理任何类型的题目,只要其中有││显现,其关键一步是去掉││符号。

初中数学核心考点到此结束。


更多推荐

方法,运算,叫做,数学,代数式,字母,方程,实数