2024年1月10日发(作者:课堂内外七下数学试卷)

(二)古希腊数学特点

古代希腊的数学,自公元前600年左右开始,到公元641年为止共持续了近1300年。前期始于公元前600年,终于公元前336年希腊被并入马其顿帝国,活动范围主要集中在驱典附近;后期则起自亚历山大大帝时期,活动地点在亚历山大利亚;公元641年亚历山大城被阿拉伯人占领,古希腊文明时代宣告终结。总括而言,希腊数学的成就是辉煌的,它为人类创造了巨大的精神财富,不论从数量还是从质量来衡量,都是世界上首屈一指的。比希腊数学家取得具体成果更重要的是:希腊数学产生了数学精神,即数学证明的演绎推理方法。数学的抽象化以及自然界依数学方式设计的信念,为数学乃至科学的发展起了至关重要的作用。而由这一精神所产生的理性、确定性、永恒的不可抗拒的规律性等一系列思想,则在人类文化发展史上占据了重要的地位。

古希腊是个充满神话的国度,古希腊数学的特点也很神化,如下:一,希腊人将数学抽象化,使之成为一种科学,具有不可估量的意义和价值。希腊人坚持使用演绎证明,认识到只有用勿容置疑的演绎推理法才能获得真理。要获得真理就必须从真理出发,不能把靠不住的事实当作已知。从《几何原本》中的10个公理出发,可以得到相当多的定理和命题。 二,希腊人在数学内容方面的贡献主要是创立平面几何、立体几何、平面与球面三角、数论,推广了算术和代数,但只是初步的,尚有不足乃至错误;三,希腊人重视数学在美学上的意义,认为数学是一种美,是和谐、简单、明确以及有秩序的艺术;

四,希腊人认为在数学中可以看到关于宇宙结构和设计的最终真理,使数学与自然界紧密联系起来,并认为宇宙是按数学规律设计的,并且能被人们所认识的。


更多推荐

数学,希腊,真理,古希腊,活动,人类,演绎推理,设计