故sin C=sin(C+60°-60°)
=sin(C+60°)cos 60°-cos(C+60°)sin 60°
=.
18.如图,直四棱柱ABCD-A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.
(1)证明:MN∥平面C1DE;
(2)求二面角A-MA1-N的正弦值.
(1)证明 连接B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=B1C.又因为N为A1D的中点,所以ND=A1D.
由题设知A1B1∥DC且A1B1=DC,可得B1C∥A1D且B1C=A1D,故ME∥ND且ME=ND,因此四边形MNDE为平行四边形,MN∥ED.又MN⊄平面C1DE,ED⊂平面C1DE,所以MN∥平面C1DE.
(2)解 由已知可得DE⊥DA,以D为坐标原点,空间直角坐标系D-xyz,
的方向为x轴正方向,建立如图所示的
则A(2,0,0),A1(2,0,4),M(1,=(-1,0,-2),,2),N(1,0,2),,0).
=(0,0,-4),=(-1,,-2),=(0,-设m=(x,y,z)为平面A1MA的一个法向量,则
所以可得m=(,1,0).
设n=(p,q,r)为平面A1MN的一个法向量,则
所以可取n=(2,0,-1).
于是cos〈m,n〉===,
所以二面角A-MA1-N的正弦值为.
19.已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P.
(1)若|AF|+|BF|=4,求l的方程;
(2)若=3,求|AB|.
解 设直线l:y=x+t,A(x1,y1),B(x2,y2).
(1)由题设得F,故|AF|+|BF|=x1+x2+,由题设可得x1+x2=.
由可得9x2+12(t-1)x+4t2=0,
令Δ>0,得t<,
则x1+x2=-从而-.
=,得t=-.
所以l的方程为y=x-.
(2)由由=3可得y1=-3y2,
可得y2-2y+2t=0,
所以y1+y2=2,从而-3y2+y2=2,故y2=-1,y1=3,
代入C的方程得x1=3,x2=,
即A(3,3),B,
故|AB|=.
20.已知函数f(x)=sin x-ln(1+x),f′(x)为f(x)的导数,证明:
(1)f′(x)的区间上存在唯一极大值点;
(2)f(x)有且仅有2个零点.
证明 (1)设g(x)=f′(x),则g(x)=cos x-,g′(x)=-sin x+.
当x∈时,g′(x)单调递减,而g′(0)>0,
g′<0,可得g′(x)在有唯一零点,设为α.
则当x∈(-1,α)时,g′(x)>0;当x∈时,g′(x)<0.
所以g(x)在(-1,α)上单调递增,在上单调递减,故g(x)在上存在唯一极大值点,即f′(x)在上存在唯一极大值点.
(2)f(x)的定义域为(-1,+∞).
①当x∈(-1,0]时,由(1)知,f′(x)在(-1,0)上单调递增.而f′(0)=0,所以当x∈(-1,0)时,f′(x)<0,故f(x)在(-1,0)上单调递减.又f(0)=0,从而x=0是f(x)在(-1,0]上的唯一零点;
②当x∈时,由(1)知,f′(x)在(0,α)上单调递增,在上单调递减,而f′(0)=0,f′<0,所以存在β∈,使得f′(β)=0,且当x∈(0,β)时,f′(x)>0;当x∈时,f′(x)<0.故f(x)在(0,β)上单调递增,在又f(0)=0,f
上单调递减.
=1-ln>0,所以当x∈时,f(x)>0.
从而,f(x)在上没有零点;
③当x∈时,f′(x)<0,所以f(x)在上单调递减.而f
>0,f(π)<0,所以f(x)在上有唯一零点;
④当x∈(π,+∞)时,ln(x+1)>1,所以f(x)<0,从而f(x)在(π,+∞)上没有零点.
综上,f(x)有且仅有2个零点.
21.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.
(1)求X的分布列;
(2)若甲药、乙药在试验开始时都赋予4分,pi(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,pi=api-1+bpi+cpi+1(i=1,2,…,7),其中a=P(X=-1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.
(ⅰ)证明:{pi+1-pi}(i=0,1,2,…,7)为等比数列;
(ⅱ)求p4,并根据p4的值解释这种试验方案的合理性.
(1)解 X的所有可能取值为-1,0,1.
P(X=-1)=(1-α)β,
P(X=0)=αβ+(1-α)(1-β),
P(X=1)=α(1-β).
所以X的分布列为
(2)(ⅰ)证明 由(1)得a=0.4,b=0.5,c=0.1.
因此pi=0.4pi-1+0.5pi+0.1pi+1,故0.1(pi+1-pi)=0.4(pi-pi-1),即pi+1-pi=4(pi-pi-1).
又因为p1-p0=p1≠0,所以{pi+1-pi}(i=0,1,2,…,7)为公比为4,首项为p1的等比数列.
(ⅱ)解 由(ⅰ)可得
p8=p8-p7+p7-p6+…+p1-p0+p0
=(p8-p7)+(p7-p6)+…+(p1-p0)
=p1.
,所以 由于p8=1,故p1=p4=(p4-p3)+(p3-p2)+(p2-p1)+(p1-p0)
=p1
. =p4表示题干中的实验方案最终认为甲药更有效的概率.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为p4=论的概率非常小,说明这种试验方案合理.
22.[选修4-4:坐标系与参数方程]
在直角坐标系xOy中,曲线C的参数方程为 (t为参数).以坐标原点O为极点,x≈0.003 9,此时得出错误结轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2ρcos θ+(1)求C和l的直角坐标方程;
(2)求C上的点到l距离的最小值.
解 (1)因为-1<=1(x≠-1).
l的直角坐标方程为2x+y+11=0.
≤1,且x2+2=2+ρsin θ+11=0.
=1,所以C的直角坐标方程为x2+
(2)由(1)可设C的参数方程为C上的点到l的距离为
=.
(α为参数,-π<α<π).
当α=-时,4cos+11取得最小值7,
. 故C上的点到l距离的最小值为23.[选修4-5:不等式选讲]
已知a,b,c为正数,且满足abc=1.证明:
(1)++≤a2+b2+c2;
(2)(a+b)3+(b+c)3+(c+a)3≥24.
证明 (1)因为a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac,且abc=1,故有
a2+b2+c2≥ab+bc+ca=所以++≤a2+b2+c2.
(2)因为a,b,c为正数且abc=1,故有
(a+b)3+(b+c)3+(c+a)3≥3=3(a+b)(b+c)(a+c)
≥3×(2=24.
所以(a+b)3+(b+c)3+(c+a)3≥24.
)×(2)×(2)
=++.
发布评论