2024年4月1日发(作者:广东汕尾市小升初数学试卷)

数学选修2-1

第一章:命题与逻辑结构

知识点:

1、命题:用语言、符号或式子表达的,可以判断真假的陈述句.

真命题:判断为真的语句.假命题:判断为假的语句.

2、“若

p

,则

q

”形式的命题中的

p

称为命题的条件,

q

称为命题的结论.

3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为

原命题,另一个称为原命题的逆命题。若原命题为“若

p

,则

q

”,它的逆命题为“若

q

,则

p

”.

4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一

个命题称为原命题,另一个称为原命题的否命题.若原命题为“若

p

,则

q

”,则它的否命题为“若

p

,则

q

”.

5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题。

其中一个命题称为原命题,另一个称为原命题的逆否命题。若原命题为“若

p

,则

q

”,则它的否命题为“若

q

,则

p

”。

6、四种命题的真假性:

原命题 逆命题

真 真

真 假

假 真

假 假

四种命题的真假性之间的关系:

否命题

逆否命题

1

两个命题互为逆否命题,它们有相同的真假性;

2

两个命题为互逆命题或互否命题,它们的真假性没有关系.

pq

,则

p

q

的充分条件,

q

p

的必要条件.

pq

,则

p

q

的充要条件(充分必要条件).

8、用联结词“且”把命题

p

和命题

q

联结起来,得到一个新命题,记作

pq

p

q

都是真命题时,

pq

是真命题;当

p

q

两个命题中有一个命题是假命题时,

pq

是假命题.

用联结词“或”把命题

p

和命题

q

联结起来,得到一个新命题,记作

pq

p

q

两个命题中有一个命题是真命题时,

pq

是真命题;当

p

q

两个命题都是假命题时,

pq

是假命题.

对一个命题

p

全盘否定,得到一个新命题,记作

p

.若

p

是真命题,则

p

必是假命题;若

p

是假命题,则

p

必是真

7、若

命题.

9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“

”表示.

含有全称量词的命题称为全称命题.

,记作“

x

p

x

”.

p

x

成立”

短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“

”表示.含有存在量词的命题称为特称命题.

特称命题“存在

中的一个

x

,使

p

x

成立”,记作“

x

p

x

”.

全称命题“对

中任意一个

x

,有

10、全称命题

特称命题

p

x

p

x

,它的否定

p

x

p

x

。全称命题的否定是特称命题。

p

x

p

x

,它的否定

p

x

p

x

。特称命题的否定是全称命题。

第二章:圆锥曲线

知识点:

1、求曲线的方程(点的轨迹方程)的步骤:建、设、限、代、化

①建立适当的直角坐标系;

②设动点

M

x,y

及其他的点;

- 20 -

③找出满足限制条件的等式;

④将点的坐标代入等式;

⑤化简方程,并验证(查漏除杂)。

2、平面内与两个定点

F

1

F

2

的距离之和等于常数(大于

FF

12

)的点的轨迹称为椭圆。这两个定点称为椭圆的焦点,两焦点

的距离称为椭圆的焦距。

MF

1

MF

2

2a

2a2c

3、椭圆的几何性质:

焦点的位置 焦点在

x

轴上

焦点在

y

轴上

图形

标准方程

范围

顶点

轴长

焦点

焦距

对称性

离心率

准线方程

a

2

x

c

x

2

y

2

2

1

ab0

2

ab

y

2

x

2

2

1

ab0

2

ab

axa

byb

1

a,0

2

a,0

1

0,b

2

0,b

bxb

aya

1

0,a

2

0,a

1

b,0

2

b,0

短轴的长

2b

长轴的长

2a

F

1

c,0

F

2

c,0

F

1

0,c

F

2

0,c

F

1

F

2

2c

c

2

a

2

b

2

,a最大

关于

x

轴、

y

轴对称,关于原点中心对称

cb

2

e1

2

0e1

aa

a

2

y

c

d

1

d

2

4、设

是椭圆上任一点,点

F

1

对应准线的距离为

d

1

,点

F

2

对应准线的距离为

d

2

,则

F

1

F

2

e

5、平面内与两个定点

F

1

F

2

的距离之差的绝对值等于常数(小于

F

1

F

2

)的点的轨迹称为双曲线。这两个定点称为双曲线

的焦点,两焦点的距离称为双曲线的焦距。

MF

1

MF

2

2a

2a2c

6、双曲线的几何性质:

焦点的位置

焦点在

x

轴上

焦点在

y

轴上

图形

标准方程

范围

顶点

轴长

焦点

- 21 -

x

2

y

2

2

1

a0,b0

2

ab

y

2

x

2

2

1

a0,b0

2

ab

xa

xa

yR

1

a,0

2

a,0

ya

ya

xR

1

0,a

2

0,a

虚轴的长

2b

实轴的长

2a

F

1

c,0

F

2

c,0

F

1

0,c

F

2

0,c


更多推荐

命题,称为,方程