2024年1月23日发(作者:建湖高三数学试卷)
初中数学韦达定理
韦达定理的介绍:
中文名:韦达定理
外文名:Vieta theorem
提出者:弗朗索瓦·韦达
提出时间:16世纪
应用学科:数学代数
适用范围:方程论 初等数学 解析几何三角
韦达定理说明了一元二次方程中根和系数之间的关系。
法国数学家弗朗索瓦·韦达于1615年在著作《论方程的识别与订正》中建立了方程根与系数的关系,提出了这条定理。由于韦达最早发现代数方程的根与系数之间有这种关系,人们把这个关系称为韦达定理。
韦达定理的公式:
设一元二次方程
中,两根x₁、x₂有如下关系:
韦达定理的证明方法:
由一元二次方程求根公式知:
则有:
韦达定理的应用方法:
韦达定理是反映一元二次方程根与系数关系的重要定理,中考(竞赛)试题涉及此定理的题目屡见不鲜,且条件隐蔽,在证(解)题时,学生往往因未看出题目中所隐含的韦达定理的条件而导致思路闭塞,或解法呆板,过程繁琐冗长,下面举例谈谈韦达定理在解题中的应用。
一、直接应用韦达定理
若已知条件或待证结论中含有a+b和a·b形式的式子,可考虑直接应用韦达定理.
例1在△ABC中,a、b、c分别是∠A、∠B、∠C的对边,D是AB边上一点,且BC=DC,设AD=d.
求证:
(1)c+d=2bcosA;
(2)c·d=b2-a2.
分析:观察所要证明的结论,自然可联想到韦达定理,从而构造一元二次方程进行证明.
证明:如图,在△ABC和△ADC中,由余弦定理,有
a2=b2+c2-2bccosA;
a2=b2+d2-2bdcosA(CD=BC=a).
∴c2-2bccosA+b2-a2=0,
d2-2bdcosA+b2-a2=0.
于是,c、d是方程x2-2bxcosA+b2-a2=0的两个根.
由韦达定理,有
c+d=2bcosA,c·d=b2-a2.
例2已知a+a2-1=0,b+b2-1=0,a≠b,求ab+a+b的
值.
分析:显然已知二式具有共同的形式:x2+x-1=0.于是a和b可视为该一元二次方程的两个根.再观察待求式的结构,容易想到直接应用韦达定理求解.
解:由已知可构造一个一元二次方程x2+x-1=0,其二根为a、b.
由韦达定理,得a+b=-1,a·b=-1.
故ab+a+b=-2.
二、先恒等变形,再应用韦达定理
若已知条件或待证结论,经过恒等变形或换元等方法,构造出形如a+b、a·b形式的式子,则可考虑应用韦达定理.
例3若实数x、y、z满足x=6-y,z2=xy-9.求证:x=y.
证明:将已知二式变形为x+y=6,xy=z2+9.
由韦达定理知x、y是方程u2-6u+(z2+9)=0的两个根.
∵x、y是实数,∴△=36-4z2-36≥0.
则z2≤0,又∵z为实数,
∴z2=0,即△=0.
于是,方程u2-6u+(z2+9)=0有等根,故x=y.
由已知二式,易知x、y是t2+3t-8=0的两个根,由韦达定理
三、已知一元二次方程两根的关系(或系数关系)求系数关系(或求两根的关系),可考虑用韦达定理
例5已知方程x2+px+q=0的二根之比为1∶2,方程的判别式的值为1.求p与q之值,解此方程.
解:设x2+px+q=0的两根为a、2a,则由韦达定理,有
a+2a=-P,①
a·2a=q,②
P2-4q=1.③
把①、②代入③,得(-3a)2-4×2a2=1,即9a2-8a2=1,于是a=±1.
∴方程为x2-3x+2=0或x2+3x+2=0.
解得x1=1,x2=2,或x1=-1,x2=-2.
例6设方程x2+px+q=0的两根之差等于方程x2+qx+p=0的两根之差,求证:p=q或p+q=-4.
证明:设方程x2+px+q=0的两根为α、β,x2+qx+P=0的两根为α'、β'.
由题意知α-β=α'-β',
故有α2-2αβ+β2=α'2-2α'β'+β'2.
从而有(α+β)2-4αβ=(α'+β')2-4α'β'.①
把②代入①,有p2-4q=q2-4p,即p2-q2+4p-4q=0,即(p+q)(p-q)+4(p-q)=0,即(p-q)(p+q+4)=0.
故p-q=0或p+q+4=0,
即p=q或p+q=-4.
四、关于两个一元二次方程有公共根的题目,可考虑用韦达定理
例7m为问值时,方程x2+mx-3=0与方程x2-4x-(m-1)=0有一个公共根?并求出这个公共根.
解:设公共根为α,易知,原方程x2 mx-3=0的两根为α、-m-α;x2-4x-(m-1)=0的两根为α、4-α.
由韦达定理,得α(m+α)=3,①
α(4-α)=-(m-1).②
由②得m=1-4α+α2,③
把③代入①得α3-3α2+α-3=0,
即(α-3)(α2+1)=0.
∵α2+1>0,∴α-3=0即α=3.
把α=3代入③,得m=-2.
故当m=-2时,两个已知方程有一个公共根,这个公共根为3.
韦达定理的补充资料:
韦达定理的发展简史
法国数学家弗朗索瓦·韦达于1615年在著作《论方程的识别与订正》中改进了三、四次方程的解法,还对n=2、3的情形,建立了方
程根与系数之间的关系,现代称之为韦达定理。
韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。韦达在16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。
韦达定理的意义
韦达定理在求根的对称函数,讨论二次方程根的符号、解对称方程组以及解一些有关二次曲线的问题都凸显出独特的作用。
一元二次方程的根的判别式为 (a,b,c分别为一元二次方程的二次项系数,一次项系数和常数项)。韦达定理与根的判别式的关系更是密不可分。
根的判别式是判定方程是否有实根的充要条件,韦达定理说明了根与系数的关系。无论方程有无实数根,实系数一元二次方程的根与系数之间适合韦达定理。判别式与韦达定理的结合,则更有效地说明与判定一元二次方程根的状况和特征。
韦达定理最重要的贡献是对代数学的推进,它最早系统地引入代数符号,推进了方程论的发展,用字母代替未知数,指出了根与系数之间的关系。韦达定理为数学中的一元方程的研究奠定了基础,对一元方程的应用创造和开拓了广泛的发展空间。
利用韦达定理可以快速求出两方程根的关系,韦达定理应用广泛,在初等数学、解析几何、平面几何、方程论中均有体现。
更多推荐
定理,方程,关系,系数,应用,代数,证明,已知
发布评论