2024年3月20日发(作者:数学试卷经常考什么内容)

__________________________________________________

习题1.4

1.直接用

-

说法证明下列各极限等式:

(1)limxa(a0);(2)limx

2

a

2

;(3)lime

x

e

a

;(4)limcosxcosa.

xaxaxaxa

证(1)

0,要使|xa|

只需

|x-a||x-a||x-a|

,由于,

xaxaa

|xa|

,|xa|a

.取

a

,则当|xa|

时,|xa|

,故limxa.

xa

a

(2)

0,不妨设|xa|1.要使|x

2

a

2

||xa||xa|

,由于

.取

min{,1},则当|xa|

时,

1|2a|1|2a|

|xa||xa||2a|1|2a|,

只需(1|2a|)|xa|

,|xa|

|x

2

a

2

|

,故limx

2

a

2

.

xa



(3) 

0,设xa.要使|e

x

e

a

|e

a

(e

xa

1)

,即0(e

xa

1)

e

xa

,1e1

a

e

a

,

0xaln

1

a

,取

min{,1},则当0xa

时,|e

x

e

a

|

,

1|2a|

e

故lime

x

e

a

. 类似证lime

x

e

a

.故lime

x

e

a

.

xaxaxa

(4)

0,要使|cosxcosa|2sin

xaxaxaxa

sin2sinsin|xa|,

2222

xa

,则当|xa|

时,|cosxcosa|

,故limcosxcosa.

2.设limf(x)l,证明存在a的一个空心邻域(a

,a)(a,a

),使得函数uf(x)在

xa

该邻域内使有界函数.

证对于

1,存在

0,使得当 0|x-a|

时,|f(x)l|1,从而

|f(x)||f(x)ll||f(x)l||l|1|l|M.

3.求下列极限:

(1x)

2

12xx

2

x

(1)limlimlim(1)1.

x0x0x0

2x2x2

x

x

2sin

2



sin

2

11cosx

2

1



1

2

1

.

(2)limlimlim

x0x0

x

2

x

2

2

x0

x

22

2



xaax1

(3)limlim(a0).

x0x0

x

x(xaa)2a

x

2

x22

(4)lim

2

.

x1

2x2x33

x

2

x22

(5)lim

2

.

x0

2x2x33

2

收集于网络,如有侵权请联系管理员删除

__________________________________________________

(2x3)

20

(2x2)

10

2

30

(6)lim

30

1.

x

(2x1)

30

2

(7)lim

x0

1x1x2x

lim1.

x0

x(1x1x)

x

3

x

2

x13x

2

x2

1

(8)lim

3

limlim

x1

x1

x1

(x1)(x

2

x1)

x1

(x1)(x

2

x1)x1



(x1)(x2)(x2)3

limlim1.

x1

(x1)(x

2

x1)

x1

(x

2

x1)3

(9)lim

x4

12x3(12x3)(x2)(12x3)

lim

x4

x2(x2)(x2)(12x3)

lim

(2x8)(x2)244

.

x4

(x4)(12x3)

63

nyy

n

n.

n(n1)

2

y

x

n

1(1y)

n

1

2

(10)limlimlim

x1

x1

y0y0

yy

2

(11)limx

2

1x

2

1lim0.

22

xx

x1x1

a

0

x

m

a

1

x

m1

a

m

a

m

(12)lim(b0).

n

x0

bx

n

bx

n1

b

n

b

n01

(13)lim

a

0

xa

1

x

x

bx

n

bx

n1

01

mm1

a

0

/b

0

,mn

a

m

(a

0

b

0

0)

0, nm

b

n

, mn.

x

4

818/x

4

(14)lim

2

lim1.

x

x1

x

11/x

2

13x

3

12x

(15)lim

x0

xx

2

lim

x0

3

(13x12x)(13x13x12x12x)

(xx

2

)(

3

13x

3

13x

3

12x

3

12x)

5x

22

22

333

2

333

2

lim

x0

x(1x)(

3

13x

3

13x

3

12x

3

12x)

55

lim.

22

x0

3333

3

(1x)(13x13x12x12x)

(16)a0,lim

lim

xa0

xa1

lim

2222

xa0xa0

xa

xa

xa

(xa)(xa)1

xaxa(xa)xa

xaxa

收集于网络,如有侵权请联系管理员删除

__________________________________________________

(xa)1

lim

xa0

xaxa(xa)xa



xa1

1

lim

.

xa0

xa(xa)xa2a



x

sinx

1

4.利用lim1及lim

1

e求下列极限:

xx

x

x

sin

xsin

x

(1)limlimlimcos

x.

x0

tan

x

x0

sin

x

x0

sin(2x

2

)sin(2x

2

)2x

2

(2)limlimlim100

2

xx0x0

3x2x3x

tan3xsin2xtan3xsin2x321

(3)limlimlim.

x0x0x0

sin5xsin5xsin5x555

xx

(4)limlim2.

x0

1cosx

x0

x

2sin

2

xaxa

cossin

sinxsina

22

cosa.(5)limlim

xaxa

xa

xa

2

k

(6)lim

1

x

x

(7)lim(15y)

y0

x

k

lim

1

x

x

x

(k)

k

x



k

k



lim

1

x

x



5

k

e

k

.

1/y

lim(15y)

1/(5y)

e

5

.



y0

x

100

1



1

1

(8)lim

1

lim

1

lim

1

e.

xx

x



x

x

x

5.给出limf(x)及limf(x)的严格定义.

xax

x100

limf(x):对于任意给定的A0,存在

0,使得当0|x-a|

时f(x)A.

xa

x

limf(x):对于任意给定的A0,存在0,使得当x时f(x)A.

义句转换

方法一

1)用同义词或同义短语替换。

①She got to China in 1950.→She___ _China in 1950.

②Be careful with your handwriting.→___ __to your

handwriting.

收集于网络,如有侵权请联系管理员删除

__________________________________________________

2)用反义词或反义短语替换。

①She hardly speaks at the meeting.→She__ __ ___ _ __ __at the

meeting.

②My watch doesn’t work well.→Something_ __ __ _ _ __my

watch.

3)用短语替换从句或用从句替换短语,例:

①After we had breakfast,we went to school.→__ __,we went to

school.

②We can’t finish the work without your help.→We can’t finish the work__

__you____us.

方法二 ---- 转换法

这种方法是用不同句型、句式、语态、引语等方法改写句子,使其意思相同。

1)句型转换(这种转换通常是用另一种句型替换原来的句型)。如:

The Great Pyramid is the biggest of all the Pyramid(金字塔).→

The Great Pyramid is__ __any other pyramid.

2)句式转换(这种转换通常是感叹句的转换或状语从句的转换等)。如:

He went to bed after he had finished his homework.→

He_ __ ___ to bed___ _he had finished his homework.

3)语态转换(这种转换通常是主动语态变被动语态或被动语态变主动语态)。

例如:

They made her work fourteen hours a day.→

She was___ _ __ __ __ __fourteen hours a day.

4)引语转换(这种转换是指直接引语变间接引语或间接引语变直接引语)。如:

①“Don’t make faces in class!”the teacher said to the student.→

The teacher__ __the student__ __make faces in class.

②Tom asked Jack if he had ever been to China.→

“___ _you ever__ __to China?”Tom asked Jack.

方法三 ---- 合并法

(这是指用连词将两个简单句合并成一个简单句或复合句,使其意思不变)

1)用并列连词 both…and…,neither…nor…,either…or…,not…but…,not

only…but also…等将两个简单句合并成一个新的简单句,如:

①Tom is good at English.Tom is also good at French.→

收集于网络,如有侵权请联系管理员删除

__________________________________________________

Tom is good at____ ____English____ ____French.

收集于网络,如有侵权请联系管理员删除


更多推荐

转换,引语,连词,证明,替换,句型,数学试卷