2023年12月10日发(作者:古蔺中考数学试卷2020)

人教版初中数学教案(最新6篇)

平行线的判定教案 篇一

一、教学目标

1、了解推理、证明的格式,理解判定定理的证法。

2、掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证。

3、通过第二个判定定理的推导,培养学生分析问题、进行推理的能力。

4、使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的教育。

二、学法引导

1、教师教法:启发式引导发现法。

2、学生学法:积极参与、主动发现、发展思维。

三、重点•难点及解决办法

(一)重点

判定定理的推导和例题的解答。

(二)难点

使用符号语言进行推理。

(三)解决办法

1、通过教师正确引导,学生积极思维,发现定理,解决重点。

2、通过教师指导,学生自行完成推理过程,解决难点及疑点。

四、课时安排

1课时《·》

五、教具学具准备

三角板、投影仪、自制胶片。

六、师生互动活动设计

1、通过设计练习,复习基础,创造情境,引入新课。

2、通过教师指导,学生探索新知,练习巩固,完成新授。

3、通过学生自己总结完成小结。

七、教学步骤

(一)明确目标

掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力。

(二)整体感知

以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知。

(三)教学过程

创设情境,复习引入

师:上节课我们学习了平行线的判定公理和一种判定方法,根据所学看下面的问题(出示投影)。

学生活动:学生口答第1、2题。

师:你能说出有什么条件,就可以判定两条直线平行呢?

学生活动:由第l、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行。

教师将第3题图形画在黑板上。 学生活动:学生口答理由,同角的补角相等。

师:要求学生写出符号推理过程,并板书。

【教法说明】本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行。第3题是为推导本节到定定理做铺垫,即如果同旁内角互补,则可以推出同位角相等,也可以推出内错角相等,为定理的推理论证,分散了难点。

师:第4题是一个实际问题,题目中已知的两个角是什么位置关系角?

学生活动:同分内角。

师:它们有什么关系。

学生活动:互补。

师:这个问题就是知道同分内角互补了,那么两条直线是不是平行的呢?这就是这节课我们要研究的问题。

有理数的大小比较 教案 篇二

一、背景知识

《有理数的大小比较》选自浙江版《义务教育课程标准实验教科书数学七年级(上册)》第一章《从自然数到有理数》的第5节,有理数大小比较的提出是从学生生活熟悉的情境入手,借助于气温的高低及数轴,得出有理数的大小比较方法。课本安排了做一做等形式多样的教学活动,让学生通过观察、思考和自己动手操作,体验有理数大小比较法则的探索过程。

二、教学目标

1、使学生能说出有理数大小的比较法则

2、能熟练运用法则结合数轴比较有理数的大小,特别是应用绝对值概念比较两个负数的大小,能利用数轴对多个有理数进行有序排列。

3、能正确运用符号∵∵写出表示推理过程中简单的因果关系。

三、教学重点与难点

重点:运用法则借助数轴比较两个有理数的大小。

难点:利用绝对值概念比较两个负分数的大小。

四、教学准备

多媒体课件

五、教学设计

(一)交流对话,探究新知

1、说一说

(多媒体显示)某一天我们5个城市的最低气温 从刚才的图片中你获得了哪些信息?(从常见的气温入手,激发学生的求知欲望,可能有些学生会说从中知道广州的最低气温10∵比上海的最低气温0∵高,有些学生会说哈尔滨的最低气温零下20∵比北京的最低气温零下10∵低等;不会说的,老师适当点拔,从而学生在合作交流中不知不觉地完成了以下填空。

比较这一天下列两个城市间最低气温的高低(填高于或低于)

广州_______上海;北京________上海;北京________哈尔滨;武汉________哈尔滨;武汉__________广州。

2、画一画:(1)把上述5个城市最低气温的数表示在数轴上,(2)观察这5个数在数轴上的位置,从中你发现了什么?

(3)温度的高低与相应的数在数轴上的位置有什么?

(通过学生自己动手操作,观察、思考,发现原点左边的数都是负数,原点右边的数都是正数;同时也发现5在0右边,5比0大;10在5右边,10比5大,初步感受在数轴上原点右边的两个数,右边的数总比左边的数大。教师趁机追问,原点左边的数也有这样的规律吗?从而激发学生探索知识的欲望,进一步验证了原点左边的数也有这样的规律。从而使学生亲身体验探索的乐趣,在探究中不知不觉获得了知识。)由小组讨论后,教师归纳得出结论:

在数轴上表示的两个数,右边的数总比左边的数大。

正数都大于零,负数都小于零,正数大于负数。

(二)应用新知,体验成功

1、练一练(师生共同完成例1后,学生完成随堂练习1)

例1:在数轴上表示数5,0,-4,-1,并比较它们的大小,将它们按从小到大的顺序用号连接。(师生共同完成)

分析:本题意有几层含义?应分几步?

要点总结:小组讨论归纳,本题解题时的一般步骤:①画数轴②描点;③有序排列;④不等号连接。

随堂练习: P19 T1

2、做一做

(1)在数轴上表示下列各对数,并比较它们的大小

①2和7 ②-6和-1 ③-6和-36 ④-和-1.5

(2)求出图中各对数的绝对值,并比较它们的大小。

(3)由①、②从中你发现了什么?

(学生小组讨论后,代表站起来发言,口述自己组的发现,说明自己组发现的过程,逐步培养学生观察、归纳、用数学语言表达数学规律的能力。)

要点总结:两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小。

在学生讨论的基础上,由学生总结得出有理数大小的比较法则。

(1)正数都大于零,负数都小于零,正数大于负数。

(2)两个正数比较大小,绝对值大的数大。

(3)两个负数比较大小,绝对值大的数反而小。

3、师生共同完成例2后,学生完成随堂练习2、3、4。

例2比较下列每对数的大小,并说明理由:(师生共同完成)

(1)1与-10,(2)-0.001与0,(3)-8与+2;(4)-与-;(5)-(+)与-|-0.8|

分析:第(4)(5)题较难,第(4)题应先通分,第(5)题应先化简,再比较。同时在讲解时,要注意格式。

注:绝对值比较时,分母相同,分子大的数大;分子相同,则分母大的数反而小;分子分母都不相同时,则应先通分再比较,或把分子化相同再比较。

两个负数比较大小时的一般步骤:①求绝对值;②比较绝对值的大小;③比较负数的大小。

思考:还有别的方法吗?(分组讨论,积极思考)

4、想一想:我们有几种方法来判断有理数的大小?你认为它们各有什么特点?

由学生讨论后,得出比较有理数的大小共有两种方法,一种是法则,另一种是利用数轴,当两个数比较时一般选用第一种,当多个有理数比较大小时,一般选用第二种较好。

练一练:P19 T2、3、4

5、考考你:请你回答下列问题:

(1)有没有的有理数,有没有最小的有理数,为什么? (2)有没有绝对值最小的有理数?若有,请把它写出来?

(3)在于-1.5且小于4.2的整数有_____个,它们分别是____。

(4)若a0,b0,a|b|,则你能比较a、b、-a、-b这四个数的大小吗?(本题属提高题,不要求全体学生掌握)

(新颖的问题会激发学生的好奇心,通过合作交流,自主探究等活动,培养学生思维的习惯和数学语言的表达能力)

6、议一议,谈谈本节课你有哪些收获

(由师生共同完成本节课的小结)本节课主要学习了有理数大小比较的两种方法,一种是按照法则,两两比较,另一种是利用数轴,运用这种方法时,首先必须把要比较的数在数轴上表示出来,然后按照它们在数轴上的位置,从左到右(或从右到左)用(或)连接,这种方法在比较多个有理数大小时非常简便。

六、布置作业:P19 A组、B组

基础好的A、B两组都做

基础较差的同学选做A组。

人教版初中数学教案大全 篇三

一元一次不等式组

教学目标

1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题;

2、理解一元一次不等式组应用题的一般解题步骤,逐步形成分析问题和解决问题的能力;

3、体验数学学习的乐趣,感受一元一次不等式组在解决实际问题中的价值。

教学难点

正确分析实际问题中的不等关系,列出不等式组。

知识重点

建立不等式组解实际问题的数学模型。

探究实际问题

出示教科书第145页例2(略)

问:(1)你是怎样理解“不能完成任务”的数量含义的?

(2)你是怎样理解“提前完成任务”的数量含义的?

(3)解决这个问题,你打算怎样设未知数?列出怎样的不等式?

师生一起讨论解决例2.

归纳小结

1、教科书146页“归纳”(略).

2、你觉得列一元一次不等式组解应用题与列二元一次方程组解应用题的步骤一样吗?

在讨论或议论的基础上老师揭示:

步法一致(设、列、解、答);本质有区别。(见下表)一元一次不等式组应用题与二元一次方程组应用题解题步骤异同表。

元二次方程的根与系数的关系教案 篇四

1、掌握一元二次方程的根与系数的关系并会初步应用。

2、培养学生分析、观察、归纳的能力和推理论证的能力。

3、渗透由特殊到一般,再由一般到特殊的认识事物的规律。

4、培养学生去发现规律的积极性及勇于探索的精神。 重点

根与系数的关系及其推导

难点

正确理解根与系数的关系。一元二次方程根与系数的关系是指一元二次方程两根的和、两根的积与系数的关系。

一、复习引入

1、已知方程x2-ax-3a=0的一个根是6,则求a及另一个根的值。

2、由上题可知一元二次方程的系数与根有着密切的关系。其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?

3、由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的两根为x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.观察两式右边,分母相同,分子是-b+b2-4ac与-b-b2-4ac.两根之间通过什么计算才能得到更简洁的关系?

二、探索新知

解下列方程,并填写表格:

方程 x1 x2 x1+x2 x1•x2

x2-2x=0

x2+3x-4=0

x2-5x+6=0

观察上面的表格,你能得到什么结论?

(1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q之间有什么关系?

(2)关于x的方程ax2+bx+c=0(a≠0)的两根x1,x2与系数a,b,c之间又有何关系呢?你能证明你的猜想吗?

解下列方程,并填写表格:

方程 x1 x2 x1+x2 x1•x2

2x2-7x-4=0

3x2+2x-5=0

5x2-一qix+6=0

小结:根与系数关系:

(1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q的关系是:x1+x2=-p,x1•x2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零。)

(2)形如ax2+bx+c=0(a≠0)的方程,可以先将二次项系数化为1,再利用上面的结论。

即:对于方程 ax2+bx+c=0(a≠0)

∵a≠0,∵x2+bax+ca=0

∵x1+x2=-ba,x1•x2=ca

(可以利用求根公式给出证明)

例1 不解方程,写出下列方程的两根和与两根积:

(1)x2-3x-1=0 (2)2x2+3x-5=0

(3)一三x2-2x=0 (4)2x2+6x=3

(5)x2-1=0 (6)x2-2x+1=0

例2 不解方程,检验下列方程的解是否正确?

(1)x2-22x+1=0 (x1=2+1,x2=2-1)

(2)2x2-3x-8=0 (x1=7+734,x2=5-734) 例3 已知一元二次方程的两个根是-1和2,请你写出一个符合条件的方程。(你有几种方法?)

例4 已知方程2x2+kx-9=0的一个根是-3,求另一根及k的值。

变式一:已知方程x2-2kx-9=0的两根互为相反数,求k;

变式二:已知方程2x2-5x+k=0的两根互为倒数,求k.

三、课堂小结

1、根与系数的关系。

2、根与系数关系使用的前提是:(1)是一元二次方程;(2)判别式大于等于零。

四、作业布置

1、不解方程,写出下列方程的两根和与两根积。

(1)x2-5x-3=0 (2)9x+2=x2 (3)6x2-3x+2=0

(4)3x2+x+1=0

2、已知方程x2-3x+m=0的一个根为1,求另一根及m的值。

3、已知方程x2+bx+6=0的一个根为-2,求另一根及b的值

人教版初中数学教案通用 篇五

学习目标:

1.理解平行线的意义两条直线的两种位置关系;

2.理解并掌握平行公理及其推论的内容;

3.会根据几何语句画图,会用直尺和三角板画平行线;

学习重点:

探索和掌握平行公理及其推论。

学习难点:

对平行线本质属性的理解,用几何语言描述图形的性质

一、学习过程:预习提问

两条直线相交有几个交点?

平面内两条直线的位置关系除相交外,还有哪些呢?

(一)画平行线

1、 工具:直尺、三角板

2、 方法:一落;二靠;三移;四画。

3、请你根据此方法练习画平行线:

已知:直线a,点B,点C.

(1)过点B画直线a的平行线,能画几条?

(2)过点C画直线a的平行线,它与过点B的平行线平行吗?

(二)平行公理及推论

1、思考:上图中,①过点B画直线a的平行线,能画 条;

②过点C画直线a的平行线,能画 条;

③你画的直线有什么位置关系? 。

②探索:如图,P是直线AB外一点,CD与EF相交于P.若CD与AB平行,则EF与AB平行吗?为什么?

二、自我检测:

(一)选择题:

1、下列推理正确的是 ( )

A、因为a//d, b//c,所以c//d B、因为a//c, b//d,所以c//d C、因为a//b, a//c,所以b//c D、因为a//b, d//c,所以a//c

2.在同一平面内有三条直线,若其中有两条且只有两条直线平行,则它们交点的个数为( )

A.0个 B.1个 C.2个 D.3个

(二)填空题:

1、在同一平面内,与已知直线L平行的直线有 条,而经过L外一点,与已知直线L平行的直线有且只有 条。

2、在同一平面内,直线L1与L2满足下列条件,写出其对应的位置关系:

(1)L1与L2 没有公共点,则 L1与L2 ;

(2)L1与L2有且只有一个公共点,则L1与L2 ;

(3)L1与L2有两个公共点,则L1与L2 。

3、在同一平面内,一个角的两边与另一个角的两边分别平行,那么这两个角的大小关系是 。

4、平面内有a 、b、c三条直线,则它们的交点个数可能是 个。

三、CD∵AB于D,E是BC上一点,EF∵AB于F,∵1=∵2.试说明∵BDG+∵B=180°。

人教版初中数学教案 篇六

生活中的立体图形:(常见的有)圆柱、圆锥、正方体、长方体、棱柱、球。棱:相邻两个面的交线。

侧棱:相邻两个侧面的交线。棱柱的所有侧棱长都相等。

底面:棱柱有上、下两个底面,形状相同。

侧面:棱柱的侧面都是平行四边形。

立体图形的分类:锥体、柱体、球体。也可分为有曲面、无曲面。还可以分为有顶点、无顶点。

棱柱:分为直棱柱、斜棱柱。直棱柱的侧面是长方形。

特殊的四棱柱:长方体、正方体。正方体的每个面都是正方形。

圆柱:上、下两个面都是圆形,侧面展开图是长方形。

圆锥:底面是圆形,侧面展开图是扇形。

截面:用一个平面去截一个几何体,截出的面。

球:用一个平面去截,截面图形是圆形。

正方体的截面:可以是正方形、长方形、梯形、三角形。

圆柱体的截面:可以是长方形、圆形、椭圆形、三角形。

展开与折叠:两个面出现在同一位置的展开图形,是不可折叠的。

从三个方向看物体的形状:正面看(主视图)、左面看(侧视图)、上面看(俯视图)

它山之石可以攻玉,以上就是为大家带来的6篇《人教版初中数学教案》,希望可以启发您的一些写作思路,更多实用的范文样本、模板格式尽在。


更多推荐

学生,问题,关系,直线,推理,数轴