2023年12月10日发(作者:八上名校期中数学试卷)

小学数学奥数精讲速算与巧算

在进行加减运算时,为了又快又准确,除了要熟练地掌握计算法则外,还需要掌握一些巧算方法。加减法的巧算主要是“凑整”,就是将算式中的数分成若干组,使每组的运算结构都是整十、整百、整千……的数,再将各组的结果求和。这种“化零为整”的思想是加减法巧算的基础。

一、先讲加法的巧算,加法具有以下两个运算律:

加法交换律:两个数相加,交换加数的位置,它们的和不变。即:

a+b=b+a

其中,a,b各表示任意数字。例如,5+6=6+5

一般地,多个数相加,任意改变相加的顺序,其和不变。例如,

a+b+c+d=d+b+c+a=…

其中,a,b,c,d各表示任意一数。

加法结合律:三个数相加,先把前两个数相加,再加上第三个数,或者,先把后两个数相加,再与第一个数相加,它们的和不变。即:

a+b+c=(a+b)+c=a+(b+c)

其中,a,b,c,各表示任意一数。例如:

4+9+7=(4+9)+7=4+(9+7)

一般地,多个数相加,可先对其中几个数相加,再与其他数相加。把加法交换律和加法结合律综合起来运用,就得到加法的一些巧算方法。

1、凑整法。

先把加在一起为整十、整百、整千……的加数加起来,然后再与其他的数相加。

例1:计算(1)23+54+18+47+82

(2)1350+49+68+51+32+1650

2、借数凑整法

有些题目直观上凑数不明显,这时可“借数”凑整。例如,计算976+85,可在85中借出24,即把85拆分成24+61,这样就可以先用976加上24,“凑”成1000,然后再加61。

例2:计算(1)57+64+238+46

(2)4993+3996+5997+848

二、减法和加减法混合运算的巧算。

加、减法有如下一些重要性质:

1、在连减或加、减混合运算中,如果算式中没有括号,那么计算时可以带着运算符号“搬家”。例如:

a-b-c=a-c-b,a-b+c=a+c-b

2、在加、减法混合运算中,去括号时,如果括号前面是“+”号,那么去掉括号后,括号内的数的运算符号不变,如果括号前面是“-”号,那么去掉括号后,括号内的数的运算符号“+”变为“-”,“-”变为“+”。例如:

a+(b-c)=a+b-c

a-(b+c)=a-b-c

a-(b-c)=a-b+c

3、在加、减法混合运算中,添括号时,如果添加的括号前面是“+”号,那么括号内的数原来的运算符号不变,如果添加的括号前面是“-”号,那么括号内的数的原来的运算符号“+”变为“-”,“-”变为“+”。例如:

a+b-c=a+(b-c)

a-b+c=a-(b+c)

a-b-c=a-(b+c)

灵活运用这些性质,可得减法或加、减混合运算的一些简便方法。

三、分组凑整法

例3 计算(1)875-364-236

(2)1847-1928+628-136-64

(3)+2234-48-24

例4 计算(1)512-382

(2)6854-876-97

(3)397-146+288-339 四、加法中的巧算

1.什么叫“补数”?

两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。

如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。

又如:11+89=100,33+67=100,22+78=100,44+56=100,55+45=100,在上面算式中,1叫9的“补数”;89叫11的“补数”,11也叫89的“补数”.也就是说两个数互为“补数”。

对于一个较大的数,如何能很快地算出它的“补数”来呢?一般来说,可以这样“凑”数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。

如: 87655→12345, 46802→53198,87362→12638,…

下面讲利用“补数”巧算加法,通常称为“凑整法”。

2.互补数先加。

例1 巧算下面各题:

①36+87+64

②99+136+101

③ 1361+972+639+28

解:①式=(36+64)+87

=100+87=187

②式=(99+101)+136

=200+136=336

③式=(1361+639)+(972+28)

=2000+1000=3000

3.拆出补数来先加。

例2 ①188+873

②548+996

③9898+203

解:①式=(188+12)+(873-12)(熟练之后,此步可略)

=200+861=1061 ②式=(548-4)+(996+4)

=544+1000=1544

③式=(9898+102)+(203-102)

=10000+101=10101

4.竖式运算中互补数先加。

如:

五、减法中的巧算

1.把几个互为“补数”的减数先加起来,再从被减数中减去。

例 3 ① 300-73-27

② -10

解:①式= 300-(73+ 27)

= 300-100=200

②式=1000-(90+80+20+10)

=1000-200=800

2.先减去那些与被减数有相同尾数的减数。

例4① 4723-(723+189)

② 2356-159-256

解:①式=4723-723-189

=4000-189=3811

②式=2356-256-159

=2100-159

=1941

3.利用“补数”把接近整十、整百、整千…的数先变整,再运算(注意把多加的数再减去,把多减的数再加上)。

例 5 ①506-397

②323-189

③467+997

④987-

解:①式=500+6-400+3(把多减的 3再加上)

=109 ②式=323-200+11(把多减的11再加上)

=123+11=134

③式=467+1000-3(把多加的3再减去)

=1464

④式=987-(178+222)-390

=987-400-400+10=197

六、加减混合式的巧算

1.去括号和添括号的法则

在只有加减运算的算式里,如果括号前面是“+”号,则不论去掉括号或添上括号,括号里面的运算符号都不变;如果括号前面是“-”号,则不论去掉括号或添上括号,括号里面的运算符号都要改变,“+”变“-”,“-”变“+”,即:a+(b+c+d)=a+b+c+d

a -(b+a+d)=a-b-c-d

a -(b-c)=a-b+c

例6 ①100+(10+20+30)

② 100-(10+20+3O)

③ 100-(30-10)

解:①式=100+10+20+30

=160

②式=100-10-20-30

=40

③式=100-30+10

=80

例7 计算下面各题:

① 100+10+20+30

② 100-10-20-30

③ 100-30+10

解:①式=100+(10+20+30)

=100+60=160

②式=100-(10+20+30) =100-60=40

③式=100-(30-10)

=100-20=80

2.带符号“搬家”

例8 计算 325+46-125+54

解:原式=325-125+46+54

=(325-125)+(46+54)

=200+100=300

注意:每个数前面的运算符号是这个数的符号.如+46,-125,+54.而325前面虽然没有符号,应看作是+325。

3.两个数相同而符号相反的数可以直接“抵消”掉

例9 计算9+2-9+3

解:原式=9-9+2+3=5

4.找“基准数”法

几个比较接近于某一整数的数相加时,选这个整数为“基准数”。

例10 计算 78+76+83+82+77+80+79+85

=640

七、乘法中的巧算

1.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式:

5×2=10 25×4=100 125×8=1000

例1 计算①123×4×25

② 125×2×8×25×5×4

解:①式=123×(4×25)

=123×100=12300

②式=(125×8)×(25×4)×(5×2)

=1000×100×10=1000000

2.分解因数,凑整先乘。

例 2计算① 24×25

② 56×125 ③ 125×5×32×5

解:①式=6×(4×25)

=6×100=600

②式=7×8×125=7×(8×125)

=7×1000=7000

③式=125×5×4×8×5=(125×8)×(5×5×4)=1000×100=100000

3.应用乘法分配律。

例3 计算① 175×34+175×66

②67×12+67×35+67×52+6

解:①式=175×(34+66)

=175×100=17500

②式=67×(12+35+52+1)

= 67×100=6700

(原式中最后一项67可看成 67×1)

例4 计算① 123×101 ② 123×99

解:①式=123×(100+1)=123×100+123=12300+123=12423

②式=123×(100-1)

=12300-123=12177

4.几种特殊因数的巧算。

例5 一个数×10,数后添0;

一个数×100,数后添00;

一个数×1000,数后添000;

以此类推。

如:15×10=150

15×100=1500

15×1000=15000

例6 一个数×9,数后添0,再减此数;

一个数×99,数后添00,再减此数; 一个数×999,数后添000,再减此数;…以此类推。

如:12×9=120-12=108

12×99=1200-12=1188

12×999=12000-12=11988

例7 一个偶数乘以5,可以除以2添上0。如:6×5=30

16×5=80

116×5=580。

例8 一个数乘以11,“两头一拉,中间相加”。如 2222×11=24442

例9 一个偶数乘以15,“加半添0”.

24×15

=(24+12)×10

=360

因为

24×15

= 24×(10+5)

=24×(10+10÷2)

=24×10+24×10÷2(乘法分配律)

=24×10+24÷2×10(带符号搬家)

=(24+24÷2)×10(乘法分配律)

例10 个位为5的两位数的自乘:十位数字×(十位数字加1)×100+25如15×15=1×(1+1)×100+25=225

25×25=2×(2+1)×100+25=625

35×35=3×(3+1)×100+25=1225

45×45=4×(4+1)×100+25=2025

55×55=5×(5+1)×100+25=3025

65×65=6×(6+1)×100+25=4225

75×75=7×(7+1)×100+25=5625

85×85=8×(8+1)×100+25=7225

95×95=9×(9+1)×100+25=9025

还有一些其他特殊因数相乘的简便算法,有兴趣的同学可参看《算得快》一书。

八、除法及乘除混合运算中的巧算

1.在除法中,利用商不变的性质巧算

商不变的性质是:被除数和除数同时乘以或除以相同的数(零除外),商不变.利用这个性质巧算,使除数变为整十、整百、整千的数,再除。

例11 计算①110÷5②3300÷25

③ 44000÷125

解:①110÷5=(110×2)÷(5×2)

=220÷10=22

②3300÷25=(3300×4)÷(25×4)

=13200÷100=132

③ 44000÷125=(44000×8)÷(125×8)

=352000÷1000=352

2.在乘除混合运算中,乘数和除数都可以带符号“搬家”。

例12 864×27÷54

=864÷54×27

=16×27

=432 3.当n个数都除以同一个数后再加减时,可以将它们先加减之后再除以这个数。例13① 13÷9+5÷9 ②21÷5-6÷5

③2090÷24-482÷24

④187÷12-63÷12-52÷12

解:①13÷9+5÷9=(13+5)÷9

=18÷9=2

②21÷5-6÷5=(21-6)÷5

=15÷5=3

③2090÷24-482÷24=(2090-482)÷24

=1608÷24=67

④187÷12-63÷12-52÷12

=(187-63-52)÷12

=72÷12=6

4.在乘除混合运算中“去括号”或添“括号”的方法:


更多推荐

运算,巧算,括号,加法,相加,符号,混合