2023年12月10日发(作者:八上名校期中数学试卷)
小学数学奥数精讲速算与巧算
在进行加减运算时,为了又快又准确,除了要熟练地掌握计算法则外,还需要掌握一些巧算方法。加减法的巧算主要是“凑整”,就是将算式中的数分成若干组,使每组的运算结构都是整十、整百、整千……的数,再将各组的结果求和。这种“化零为整”的思想是加减法巧算的基础。
一、先讲加法的巧算,加法具有以下两个运算律:
加法交换律:两个数相加,交换加数的位置,它们的和不变。即:
a+b=b+a
其中,a,b各表示任意数字。例如,5+6=6+5
一般地,多个数相加,任意改变相加的顺序,其和不变。例如,
a+b+c+d=d+b+c+a=…
其中,a,b,c,d各表示任意一数。
加法结合律:三个数相加,先把前两个数相加,再加上第三个数,或者,先把后两个数相加,再与第一个数相加,它们的和不变。即:
a+b+c=(a+b)+c=a+(b+c)
其中,a,b,c,各表示任意一数。例如:
4+9+7=(4+9)+7=4+(9+7)
一般地,多个数相加,可先对其中几个数相加,再与其他数相加。把加法交换律和加法结合律综合起来运用,就得到加法的一些巧算方法。
1、凑整法。
先把加在一起为整十、整百、整千……的加数加起来,然后再与其他的数相加。
例1:计算(1)23+54+18+47+82
(2)1350+49+68+51+32+1650
2、借数凑整法
有些题目直观上凑数不明显,这时可“借数”凑整。例如,计算976+85,可在85中借出24,即把85拆分成24+61,这样就可以先用976加上24,“凑”成1000,然后再加61。
例2:计算(1)57+64+238+46
(2)4993+3996+5997+848
二、减法和加减法混合运算的巧算。
加、减法有如下一些重要性质:
1、在连减或加、减混合运算中,如果算式中没有括号,那么计算时可以带着运算符号“搬家”。例如:
a-b-c=a-c-b,a-b+c=a+c-b
2、在加、减法混合运算中,去括号时,如果括号前面是“+”号,那么去掉括号后,括号内的数的运算符号不变,如果括号前面是“-”号,那么去掉括号后,括号内的数的运算符号“+”变为“-”,“-”变为“+”。例如:
a+(b-c)=a+b-c
a-(b+c)=a-b-c
a-(b-c)=a-b+c
3、在加、减法混合运算中,添括号时,如果添加的括号前面是“+”号,那么括号内的数原来的运算符号不变,如果添加的括号前面是“-”号,那么括号内的数的原来的运算符号“+”变为“-”,“-”变为“+”。例如:
a+b-c=a+(b-c)
a-b+c=a-(b+c)
a-b-c=a-(b+c)
灵活运用这些性质,可得减法或加、减混合运算的一些简便方法。
三、分组凑整法
例3 计算(1)875-364-236
(2)1847-1928+628-136-64
(3)+2234-48-24
例4 计算(1)512-382
(2)6854-876-97
(3)397-146+288-339 四、加法中的巧算
1.什么叫“补数”?
两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。
如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。
又如:11+89=100,33+67=100,22+78=100,44+56=100,55+45=100,在上面算式中,1叫9的“补数”;89叫11的“补数”,11也叫89的“补数”.也就是说两个数互为“补数”。
对于一个较大的数,如何能很快地算出它的“补数”来呢?一般来说,可以这样“凑”数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。
如: 87655→12345, 46802→53198,87362→12638,…
下面讲利用“补数”巧算加法,通常称为“凑整法”。
2.互补数先加。
例1 巧算下面各题:
①36+87+64
②99+136+101
③ 1361+972+639+28
解:①式=(36+64)+87
=100+87=187
②式=(99+101)+136
=200+136=336
③式=(1361+639)+(972+28)
=2000+1000=3000
3.拆出补数来先加。
例2 ①188+873
②548+996
③9898+203
解:①式=(188+12)+(873-12)(熟练之后,此步可略)
=200+861=1061 ②式=(548-4)+(996+4)
=544+1000=1544
③式=(9898+102)+(203-102)
=10000+101=10101
4.竖式运算中互补数先加。
如:
五、减法中的巧算
1.把几个互为“补数”的减数先加起来,再从被减数中减去。
例 3 ① 300-73-27
② -10
解:①式= 300-(73+ 27)
= 300-100=200
②式=1000-(90+80+20+10)
=1000-200=800
2.先减去那些与被减数有相同尾数的减数。
例4① 4723-(723+189)
② 2356-159-256
解:①式=4723-723-189
=4000-189=3811
②式=2356-256-159
=2100-159
=1941
3.利用“补数”把接近整十、整百、整千…的数先变整,再运算(注意把多加的数再减去,把多减的数再加上)。
例 5 ①506-397
②323-189
③467+997
④987-
解:①式=500+6-400+3(把多减的 3再加上)
=109 ②式=323-200+11(把多减的11再加上)
=123+11=134
③式=467+1000-3(把多加的3再减去)
=1464
④式=987-(178+222)-390
=987-400-400+10=197
六、加减混合式的巧算
1.去括号和添括号的法则
在只有加减运算的算式里,如果括号前面是“+”号,则不论去掉括号或添上括号,括号里面的运算符号都不变;如果括号前面是“-”号,则不论去掉括号或添上括号,括号里面的运算符号都要改变,“+”变“-”,“-”变“+”,即:a+(b+c+d)=a+b+c+d
a -(b+a+d)=a-b-c-d
a -(b-c)=a-b+c
例6 ①100+(10+20+30)
② 100-(10+20+3O)
③ 100-(30-10)
解:①式=100+10+20+30
=160
②式=100-10-20-30
=40
③式=100-30+10
=80
例7 计算下面各题:
① 100+10+20+30
② 100-10-20-30
③ 100-30+10
解:①式=100+(10+20+30)
=100+60=160
②式=100-(10+20+30) =100-60=40
③式=100-(30-10)
=100-20=80
2.带符号“搬家”
例8 计算 325+46-125+54
解:原式=325-125+46+54
=(325-125)+(46+54)
=200+100=300
注意:每个数前面的运算符号是这个数的符号.如+46,-125,+54.而325前面虽然没有符号,应看作是+325。
3.两个数相同而符号相反的数可以直接“抵消”掉
例9 计算9+2-9+3
解:原式=9-9+2+3=5
4.找“基准数”法
几个比较接近于某一整数的数相加时,选这个整数为“基准数”。
例10 计算 78+76+83+82+77+80+79+85
=640
七、乘法中的巧算
1.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式:
5×2=10 25×4=100 125×8=1000
例1 计算①123×4×25
② 125×2×8×25×5×4
解:①式=123×(4×25)
=123×100=12300
②式=(125×8)×(25×4)×(5×2)
=1000×100×10=1000000
2.分解因数,凑整先乘。
例 2计算① 24×25
② 56×125 ③ 125×5×32×5
解:①式=6×(4×25)
=6×100=600
②式=7×8×125=7×(8×125)
=7×1000=7000
③式=125×5×4×8×5=(125×8)×(5×5×4)=1000×100=100000
3.应用乘法分配律。
例3 计算① 175×34+175×66
②67×12+67×35+67×52+6
解:①式=175×(34+66)
=175×100=17500
②式=67×(12+35+52+1)
= 67×100=6700
(原式中最后一项67可看成 67×1)
例4 计算① 123×101 ② 123×99
解:①式=123×(100+1)=123×100+123=12300+123=12423
②式=123×(100-1)
=12300-123=12177
4.几种特殊因数的巧算。
例5 一个数×10,数后添0;
一个数×100,数后添00;
一个数×1000,数后添000;
以此类推。
如:15×10=150
15×100=1500
15×1000=15000
例6 一个数×9,数后添0,再减此数;
一个数×99,数后添00,再减此数; 一个数×999,数后添000,再减此数;…以此类推。
如:12×9=120-12=108
12×99=1200-12=1188
12×999=12000-12=11988
例7 一个偶数乘以5,可以除以2添上0。如:6×5=30
16×5=80
116×5=580。
例8 一个数乘以11,“两头一拉,中间相加”。如 2222×11=24442
例9 一个偶数乘以15,“加半添0”.
24×15
=(24+12)×10
=360
因为
24×15
= 24×(10+5)
=24×(10+10÷2)
=24×10+24×10÷2(乘法分配律)
=24×10+24÷2×10(带符号搬家)
=(24+24÷2)×10(乘法分配律)
例10 个位为5的两位数的自乘:十位数字×(十位数字加1)×100+25如15×15=1×(1+1)×100+25=225
25×25=2×(2+1)×100+25=625
35×35=3×(3+1)×100+25=1225
45×45=4×(4+1)×100+25=2025
55×55=5×(5+1)×100+25=3025
65×65=6×(6+1)×100+25=4225
75×75=7×(7+1)×100+25=5625
85×85=8×(8+1)×100+25=7225
95×95=9×(9+1)×100+25=9025
还有一些其他特殊因数相乘的简便算法,有兴趣的同学可参看《算得快》一书。
八、除法及乘除混合运算中的巧算
1.在除法中,利用商不变的性质巧算
商不变的性质是:被除数和除数同时乘以或除以相同的数(零除外),商不变.利用这个性质巧算,使除数变为整十、整百、整千的数,再除。
例11 计算①110÷5②3300÷25
③ 44000÷125
解:①110÷5=(110×2)÷(5×2)
=220÷10=22
②3300÷25=(3300×4)÷(25×4)
=13200÷100=132
③ 44000÷125=(44000×8)÷(125×8)
=352000÷1000=352
2.在乘除混合运算中,乘数和除数都可以带符号“搬家”。
例12 864×27÷54
=864÷54×27
=16×27
=432 3.当n个数都除以同一个数后再加减时,可以将它们先加减之后再除以这个数。例13① 13÷9+5÷9 ②21÷5-6÷5
③2090÷24-482÷24
④187÷12-63÷12-52÷12
解:①13÷9+5÷9=(13+5)÷9
=18÷9=2
②21÷5-6÷5=(21-6)÷5
=15÷5=3
③2090÷24-482÷24=(2090-482)÷24
=1608÷24=67
④187÷12-63÷12-52÷12
=(187-63-52)÷12
=72÷12=6
4.在乘除混合运算中“去括号”或添“括号”的方法:
更多推荐
运算,巧算,括号,加法,相加,符号,混合
发布评论