2023年12月2日发(作者:数学试卷没考好写评语)

中职数学答案

【篇一:中职数学试卷:数列(带答案)】

class=txt>时间:90分钟 满分:100分

一、 选择题(每题3分,共30分)

1.数列-1,1,-1,1,…的一个通项公式是().

(a)an?(?1)n (b)an?(?1)n?1 (c)an??(?1)n (d)an?sin

2.已知数列?an?的首项为1,以后各项由公式

公式是().

(a) (b) (c) (d) n? 2给出,则这个数列的一个通项

3.已知等差数列1,-1,-3,-5,…,则-89是它的第( )项;

(a)92(b)47 (c)46 (d)45

4.数列?an?的通项公式an?2n?5,则这个数列()

(a)是公差为2的等差数列 (b)是公差为5的等差数列

(c)是首项为5的等差数列 (d)是首项为n的等差数列

5.在等比数列?an?中,a1 =5,q?1,则s6=( ).

(a)5 (b)0(c)不存在 (d) 30

6.已知在等差数列?an?中,=3,=35,则公差d=( ).

(a)0 (b) ?2 (c)2(d) 4

7.一个等比数列的第3项是45,第4项是-135,它的公比是( ).

(a)3(b)5 (c) -3 (d)-5

8.已知三个数 -80,g,-45成等比数列,则g=()

(a)60 (b)-60(c)3600(d) ?60

9.等比数列的首项是-5,公比是-2,则它的第6项是( )

(a) -160 (b)160 (c)90 (d) 10

55510.已知等比数列,,,…,则其前10项的和s10?( ) 248

51111(a) (1?10)(b)5(1?11) (c)5(1?9) (d)5(1?10)

42222

二、填空题(每空2分,共30分)

11.数列2,-4,6,-8,10,…,的通项公式an?12.等差数列3,8,13,…的公差d=,通项公式an?___________,a8= .

13.观察下面数列的特点,填空: 1111-1,, ,,?,, ,…,an?_________。 2456 14.已知等差数列an?5n-2,则a5?a8?a3?a10?,a4?a9?15.数列?an?是等比数列,a1?1,q?3, 则a5?16.一个数列的通项公式是an?n(n?1), 则a11?,56是这个数列的第 项.

17. 已知三个数3?1,a,3?1成等差数列,则a= 。

18.等差数列?an?中,a1?100,d??2,则s50?三、解答题(每题10分,共40分)

19.等差数列?an?中,a4?6,s4?48,求a1.

20.一个等差数列的第2项是5,第6项是21,求它的第51项.

21.等比数列3,9,27,……中,求a7.

22.已知等比数列的前5项和是242,公比是3,求它的首项.

11(?1)n

参考答案:1-10:abcad ccdbd 11.2n?(?1) 12.5,5n-2,38 13.?,?,

37nn

14.61,61,61 15.81 16.110,8 17. 18.2550 19.18 20.201 21.3n

22.2

【篇二:中职数学试卷:不等式】

class=txt>时间:90分钟 满分:100分

一.选择题(每题3分,共24分)

1. 若a0,ab0,则()

a. b0b. b≥0c. b0 d. b∈r

2. 不等式-2x-6的解集为() a. ?xx?3? b. ?xx??3?

c. ?xx??3?d. ?xx?3?

3. 不等式(x+1)(x-3)0的解集为() a. ?xx?3? b. ?xx??1?

c. ?x?1?x?3? d. xx?3或x??1

4. 不等式x(x+2)?0的解集为() a. ?xx?0? b. ?xx??2?

c. ?x?2?x?0? d. xx?0或x?-2

5. 若a?b,且b0,则下列各式中成立的是() a. a+b0 b. a+b0 c.

a?b d. b-a0

6.下列不等式中成立的是()

a. x20b. x2+x+10c. x2-10 d. -aa

7.下列不等式与x1同解的是()

a. -2x-2 b. mxmc. x2(x-1)0 d. (x+1)2(1-x)0

8.不等式3x?1的解集为()

a. r b. xx0或x??

二.填空题(每空2分,共32分) ?2?

c. ??xx?32?d. ??x0?x?3??2?? 3? 9. 若a-2a,则a 0;若a2a,则a 0.

10. 若ab,c+10,则ac bc ;ac2 bc2.

775811. 比较大小:;;a2 0. 911811

12. 集合{xx?3}用区间表示为;区间(-3,1?用集合表示为 .

集合?xx??2?区间(1,+∞)用集合表示为?用区间表示为3?

13.不等式x+10的解集是 ;(用区间表示)

不等式2x3解集是.(用区间表示)

14. 如果x-35,那么x ;如果-2x6,那么x .

15. 不等式x2+6x+9≥0的解集为 .

三.解答题

16.(32分)解不等式:

(1) 4x+1≤5 (2) 3x+2≥5

(3) ??1-x?0?11

50 (4) -3x2 2x2x15

(5) 1

2x?1?3 (6) x??2?0

(7) 3x2-2x-1≥0 (8) -x2-2x+3≥0

17.(12分)比较大小:

(1)(x+1)(x+5)与(x+3)2(2) (x2+1)2与x4+x2+1 参考答案:1-8:cddc abad 9., 10., 11.,,?

12.(??,3),{x|?3?x?1},(??,2233

3)?(3,??),{x|x1} 13.(?1,??),(?2,2)

15.{x|x??3} 16.(1);(2);(3);(4);(5);(6);(7);(8). 17.(1),? 14.8,-3

【篇三:中职数学检测题及答案】

xt>2012-2013-1(11春建筑学前教育)期末数学试题(第3套)

(第六章一节至第七章二节)

一、选择题(共10小题,每题3分,共30分)

1.已知等差数列3,8,13,18,…,则48是它的第____项 ( d )

a. 长度 b. 力 c. 温度 d.质量

9.在等差数列{an}中,若s10=60,则a1+a10= ( a ) a.12

b. 24 c. 36

d. 48

10.若a,b,c成等差数列,且a+c=10,则a+b+c=( d )

答…………要…………不…………内…………线…………封…………密

…………○……… a. 7

b. 8 c. 9d.10

2.等差数列-5,-10,-15,-20,…的公差d=a. 2

b. 3c. 4

d. -5

3.在等差数列{an}中,a4 = 2,d = 3,a2 + a3 = a. 1

b. 16c. 20

d. 24

5.已知40,x,100成等差数列,则x= a. 70

b. 40 c. 80d. 100

6.下列四个数中,是数列{3n

+1}中的项是a.28

b. 29 c. 30

d. 31

7.下面数列为等差数列的是 a.2,4,6,7,8,9,10,… b.

1,2,4,8,16,32,… c.6,3,0,-3,-6,-9,…

d. 1,0.7,0.4,0.25,0.2,…

8.下面的量中是向量的是 命题教师:11春建筑、学前教育专业数学

第1页,共4页

( d ) ( a ) ( c )a )a )c )b )

a. 2

b. 6c. 4

d.15

二、填空题(共11空,每空2分,共22分) 1.数列的通项公式an

2n =(-1)n,该数列的第3项是:-2

3

3.观察数列特点填空:3,6,12,(24),48, … 4.写出下列数列的一个通项公式。 (1)2,4,6,8,10,12,14,…an=2n (2)1,3,5,7,…an=2n-1

10. 等比数列1,4,16,…的前5项和s5 =341

11春建筑、学前教育专业数学第2页,共4页

((((

1.已知等差数列20,16,12,… ;问:-56是该数列中的一项吗?如果是,是第几项?

解:等差数列20,16,12,…的通项公式为:an=24-4n,

24-4n=-56 n=20 所以,-56是该数列的第20项。

2.求等比数列18,14,1

2,… 前4项的和。

解:a1

1=8,q=2

所以s115

4=8(1-24)/(1-2)= 8

3.如图所示,在平行四边形abcd中,求向量―+―命题教师:

11春建筑、学前教育专业数学第3页,共4页

d c

a b

ab―ad=db ad+ab=ac ac―ad=dc

4. 已知等差数列{an}中,a1=5,a20=45,求s20 解:s20=20(5+45)/2=500 5.作图题

(1)已知向量a和向量b,求作a+b (2)已知向量c和向量d,求作c-d

c

-d

11春建筑、学前教育专业数学 第4页,共4页

…………○…………密…………封…………线…………内…………不…………要…………答…………题…………○………


更多推荐

数学,向量,下列,建筑,每题,通项