2024年1月11日发(作者:有没有下载数学试卷的软件)

一元一次方程应用题

1.列一元一次方程解应用题的一般步骤

(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.

2.和差倍分问题

增长量=原有量×增长率 现在量=原有量+增长量

3.等积变形问题

常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.

①圆柱体的体积公式 V=底面积×高=S·h=r2h

②长方体的体积 V=长×宽×高=abc

4.数字问题

一般可设个位数字为a,十位数字为b,百位数字为c.

十位数可表示为10b+a, 百位数可表示为100c+10b+a.

然后抓住数字间或新数、原数之间的关系找等量关系列方程.

5.市场经济问题

(1)商品利润=商品售价-商品成本价 (2)商品利润率=商品利润×1商品成本价(3)商品销售额=商品销售价×商品销售量

(4)商品的销售利润=(销售价-成本价)×销售量

(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.

6.行程问题:路程=速度×时间 时间=路程÷速度 速度=路程÷时间

(1)相遇问题: 快行距+慢行距=原距

(2)追及问题: 快行距-慢行距=原距

(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度

逆水(风)速度=静水(风)速度-水流(风)速度

抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.

7.工程问题:工作量=工作效率×工作时间

完成某项任务的各工作量的和=总工作量=1

8.储蓄问题

利润=每个期数内的利息×100% 利息=本金×利率×期数

本金

1.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?

2.兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?

3.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80•毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,≈3.14).

4.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.

5.有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,•这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?

6.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几个工人加工甲种零件.

7.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.

(1)某户八月份用电84千瓦时,共交电费30.72元,求a.

(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦?•应交电费是多少元?

8.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.

(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.

(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,•销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?

1.解:设甲、乙一起做还需x小时才能完成工作.

根据题意,得1111×+(+)x=1

6264 2.解:设x年后,兄的年龄是弟的年龄的2倍,

则x年后兄的年龄是15+x,弟的年龄是9+x.

由题意,得2×(9+x)=15+x

(点拨:-3年的意义,并不是没有意义,而是指以今年为起点前的3年,是与3•年后具有相反意义的量)

3.解:设圆柱形水桶的高为x毫米,依题意,得

( ·2002)x=300×300×80

2x分.

600 4.解:设第一铁桥的长为x米,那么第二铁桥的长为(2x-50)米,•过完第一铁桥所需的时间为 过完第二铁桥所需的时间为 依题意,可列出方程

2x50分.

600x52x50+=

60060600 ∴2x-50=2×100-50=150

5.解:设这种三色冰淇淋中咖啡色配料为2x克,

那么红色和白色配料分别为3x克和5x克.

根据题意,得2x+3x+5x=50

于是2x=10,3x=15,5x=25

6.解:设这一天有x名工人加工甲种零件,

则这天加工甲种零件有5x个,乙种零件有4(16-x)个.

根据题意,得16×5x+24×4(16-x)=1440

7.解:(1)由题意,得

0.4a+(84-a)×0.40×70%=30.72

解得a=60

(2)设九月份共用电x千瓦时,则

0.40×60+(x-60)×0.40×70%=0.36x

解得x=90

所以0.36×90=32.40(元)

8.解:按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,

设购A种电视机x台,则B种电视机y台.

(1)①当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程

1500x+2100(50-x)=90000

即5x+7(50-x)=300

2x=50

x=25

50-x=25

②当选购A,C两种电视机时,C种电视机购(50-x)台,

可得方程1500x+2500(50-x)=90000

3x+5(50-x)=1800

x=35

50-x=15

③当购B,C两种电视机时,C种电视机为(50-y)台.

可得方程2100y+2500(50-y)=90000

21y+25(50-y)=900,4y=350,不合题意

由此可选择两种方案:一是购A,B两种电视机25台;二是购A种电视机35台,C种电视机15台.

(2)若选择(1)中的方案①,可获利

150×25+250×15=8750(元)

若选择(1)中的方案②,可获利

150×35+250×15=9000(元)

9000>8750 故为了获利最多,选择第二种方案.

和差问题的公式

(和+差)÷2=大数

(和-差)÷2=小数

和倍问题

和÷(倍数-1)=小数

小数×倍数=大数 (或者 和-小数=大数)

差倍问题

差÷(倍数-1)=小数

小数×倍数=大数 (或 小数+差=大数)

植树问题

1、非封闭线路上的植树问题主要可分为以下三种情形:

⑴如果在非封闭线路的两端都要植树,

那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1)

株距=全长÷(株数-1)

⑵如果在非封闭线路的一端要植树,另一端不要植树,

那么: 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数

⑶如果在非封闭线路的两端都不要植树,

那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1)

株距=全长÷(株数+1)

盈亏问题

(盈+亏)÷两次分配量之差=参加分配的份数

(大盈-小盈)÷两次分配量之差=参加分配的份数

(大亏-小亏)÷两次分配量之差=参加分配的份数

相遇问题

相遇路程=速度和×相遇时间

相遇时间=相遇路程÷速度和

速度和=相遇路程÷相遇时间

追及问题

追及距离=速度差×追及时间

追及时间=追及距离÷速度差

速度差=追及距离÷追及时间

利润与折扣问题

利润=售出价-成本

利润率=利润÷成本×100%=(售出价÷成本-1)×100%

涨跌金额=本金×涨跌百分比

折扣=实际售价÷原售价×100%(折扣<1)

利息=本金×利率×时间

税后利息=本金×利率×时间×(1-20%)

生产问题:

单位时间生产量×生产时间=已生产量

原计划生产总量-已生产量=还要生产量

长度单位换算

1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米

面积单位换算

1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米

1平方分米=100平方厘米 1平方厘米=100平方毫米

体(容)积单位换算

1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升

1立方厘米=1毫升 1立方米=1000升

重量单位换算

1吨=1000 千克 1千克=1000克 1千克=1公斤


更多推荐

问题,时间,商品,速度,电视机,关系,追及