2024年1月22日发(作者:凤台精忠小升初数学试卷)

小学五年级上册数学教学设计

小学五年级上册数学教学设计1

教材分析

义务教育课程标准实验教科书人教版小学数学五年级上册第五单元《平行四边形的面积》第一课时(包括教材80-81页例1、例2和“做一做”,练习十五中的第1-4题。)通过实验、操作、观察图形的拼摆、割补理解平行四边形的面积计算公式的________,从而进行分析、概括出面积计算公式,进一步发展学生的思维能力和发展学生的空间观念。

学情分析

1.学生在以前的学习中,初步认识了各种平面图形的特征,掌握了长方形、正方形的面积计算,加上这些平面图形在生活中随处可见,应用也十分广泛,学生学习时并不陌生。

2、从学生的现实生活与日常经验出发,设置切近生活的情境,把学习过程变成有趣的活动。

教学目标

知识与技能

1.使学生理解和掌握平行四边形的.面积计算公式。

2、会正确计算平行四边形的面积。

过程与方法:

1.通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,

2、发展学生的空间观念。

情感态度与价值观:引导学生运用转化的思想探索知识的变化规律,培养学生分析问题和解决问题的能力。通过演示和操作,使学生感悟数学知识内在联系的逻辑之美,加强审美意识。

教学重点和难点

重点、难点:理解和掌握平行四边形的面积计算公式;理解平行四边形的面积计算公式推导过程。

教学过程

一、复习导入

1.什么叫面积?常用的面积计量单位有那些?

2.出示一张长方形纸,他是什么形状?它的面积怎么算?

二、探究新知

1、情景导入:出示长方形、平行四边形。这两个图形哪一个大一些呢?平行四边形的面积怎样算呢?

板书课题:平行四边形的面积

2.用数方格的方法计算面积。

(1)用幻灯出示教材第80页方格图:我们已经知道可以用数方格的方法得到一个图形的面积。现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。

说明要求:一个方格表示1cm2,不满一格的都按半格计算。把数出的数据填在表格中(见教材第80页表格)。

(2)同桌合作完成。

(3)汇报结果,可用投影展示学生填好的表格。

(4)观察表格的数据,你发现了什么?通过学生讨论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。

2.推导平行四边形面积计算公式。

(1)引导:我们用数方格的方法得到了一个平行四边形的面积,但是这个方法比较麻烦,也不是处处适用。我们已经知道

长方形的面积可以用长乘宽计算,平行四边形的面积是不是也有其他计算方法呢?

(2)归纳学生意见,提出:通过数方格我们已经发现这个平行四边形的面积等于底乘高,是不是所有的平行四边形都可以用这个方法计算呢?需要验证一下。因为我们已经会计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?请同学们试一试。

a.学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。

b.请学生演示剪拼的过程及结果。

c.教师用教具演示剪—平移—拼的过程。

(3)我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?

小组讨论。出示讨论题:

①拼出的长方形和原来的平行四边形比,面积变了没有?

②拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?

③能根据长方形面积计算公式推导出平行四边形的面积计算公式吗?

小组汇报,教师归纳:

我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。

这个长方形的长与平行四边形的底相等,

这个长方形的宽与平行四边形的高相等,

因为长方形的面积=长×宽,

所以平行四边形的面积=底×高。

3.教师指出在数学中一般用S表示图形的面积,a表示图形的底,h表示图形的高,请同学们把平行四边形的面积计算公式用字母表示出来。

S=ah

三、应用反馈。

1.出示教材练习十五第1题。读题并理解题意。

学生试做,交流作法和结果。

2.讨论:下面两个平行四边形的面积相等吗?为什么?

学生讨论汇报。全班订正。(通过不同形式的练习,不仅巩固了知识,同时培养了学生解决问题的能力)

四、课堂小结。通过这节课的学习,你有什么收获?(引导学生回顾学习过程,体验学习方法。)

小学五年级上册数学教学设计2

积的近似值

教学内容:

教材第66页例9,“练一练”,第67~68页练习十二第8~11题。

教学目标:

1.使学生进一步掌握小数乘法的计算方法,能根据要求用四舍五入的方法求积的近似值。

2.使学生了解四舍五入取近似值的方法在小数计算中的应用,积累求近似值的经验,培养计算技能,发展数感。

3.使学生主动参与思考与解决问题的活动,感受获得方法的心理满足,提高学习数学自信心。

教学重点:

求积的近似值。

教学过程:

一、复习。

1、计算下列各算式。(小黑板出示)

2.51x0.72.51x52.51x5.7

2、小数乘法的计算法则。

指名学生回答,特别是位数不够怎么办?

二、新授。

1、教学例9。

(1)出示例题:王大伯前年收入3.18万元,去年的收入是前年的1.6倍。去年他家大约收入多少万元?(得数保留两位小数)

(2)计算方法,列出算式。

(3)板书:3.18×1.6≈()

指名一人板书竖式,其余学生在练习本上计算,集体订正。

说一说:积怎样保留两位小数?

(4)练一练。

(5)求出下面各题积的近似值。

得数保留一位小数:7.2×0.090.86×3.2

得数保留两位小数:0.28×0.75.89×3.6

2、试一试。

下面各题怎样计算比较简便?

0.25×0.7340.32×403

完成后,学生交流。指一人板书。

3、练一练。

用简便方法怎样计算比较简便?

0.25×0.73×40.32×403

三、练习巩固。

完成练习十二8~12题

学生小组完成,集体讲评

四、板书设计。

积的近似值

3.18×1.6≈()

小学五年级上册数学教学设计3

简易方程

复习目标:

1.会用字母表示数、数量、定律和计算公式。

2.理解方程的意义,会判断方程。能解方程并验算。

3.能用方程解决实际问题。

复习过程:

一、概念回顾。

1.什么叫做方程?等式与方程有什么区别和联系?什么叫做方程的解和解方程?

2.用字母表示数应该注意什么?

3.用方程解决问题的步骤是什么?

二、基本练习:

1.方程0.6X=3的解是()

2.a与b的和的一半是()。

3.梯形面积计算公式用字母表示是(),乘法结合律用字母表示是()。

4.判断。

(1)a×b×8可以简写成ab8。

(2)x+5=4×5是方程。

(3)方程一定是等式。

(4)a的立方等于3个a相加。

(5)a÷b中,a、b可以是任何数。

5.解方程。

10.2-5X=2.23×1.5+6X=335.6X-3.8=1.8

3(X+5)=24600÷(15-X)=200X÷6-2.5=1.1

6.解决问题。

(1)一个三角形的高是6米,底是20米,求面积。(用公式计算。)

(2)妈妈有200元钱,是小红的4倍多20元,小红有多少元?

(3)爸爸的年龄比儿子大32岁,是儿子年龄的9倍,爸爸和儿子各多少岁?

(4)学校买10套课桌用500元,已知桌子的单价是凳子的4倍,每张桌子多少元?

三、作业。

小学五年级上册数学教学设计4

认识平方千米

一、教学目标:

1、使学生知道测量和计算大面积的土地,通常用平方千米作单位;通过实际观察和推算,体会1平方千米的实际大小;

知道1平方千米=1000000平方米=100公顷,会进行简单的单位换算。

2、使学生能借助计算器,应用平面图形的面积公式和有关面积单位换算的知识解决一些简单的实际问题

3、使学生在学习活动中进一步体会数学与生活联系,培养相互合作的能力。

二、教学重点:

让学生认识1平方千米,知道公顷和平方千米、平方米之间的进率,会进行简单的单位换算。

三、教学难点:

体会1平方千米的实际大小。

四、教学过程:

(一)交流预习作业,揭示课题

1、交流预习作业

2、揭示课题

今天这节课,我们还要来学习另外一个常用的土地面积单位:平方千米

(二)目标驱动,分层探究

1.欣赏图片,初步感受“平方千米”

2、探究1平方千米与公顷和平方米之间的关系。

导学要点:

猜一猜1平方千米和1公顷,哪个大?说说为什么?

指出:边长为1千米的正方形土地的面积是1平方千米.

那么1平方千米与平方米和公顷之间的关系到底是什么呢?请同学们围绕学习材料自学.

交流探究成果。

板书:

1平方千米=1000000平方米=100公顷

导学单:

(1)边长为1千米的正方形土地的面积是1平方千米。你能用米作单位,来计算一下这个正方形土地的面积是多少平方米吗?合多少公顷?

(2)1平方千米=()平方米=()公顷

小结:1平方千米和公顷之间的进率是(),和平方米之间的进率是()。

3.完成书本P17练一练。

自由读书本例9中的资料,了解平方千米的运用。

补充:中国的国土面积大约是960万平方千米,这个面积包括了领土、内海、领海等。我们的家乡海门的面积约有1002平方千米。

介绍足球场面积。

(三)分层练习,内化提升

1.单位换算

30平方千米=()公顷

6000公顷=()平方千米

5平方千米=()公顷

=()平方米

400公顷=()平方千米

=()平方米

2.完成练习三第14、15题

3.完成练习三第16、17题

4、优生完成思考题

5、课堂小结

分层进行练习,然后全班校对,汇报在练习中出现的问题,试生共同查找原因、研究对策。

这一课你有什么收获?你能把学过的面积单位按照从小到大的顺序说一说,并说出相邻两个单位之间的进率各是多少?

(四)当堂检测,评价反思。

1、《补充习题》

2、每日一题:

有两块地,面积都是0.64公顷,一块是长为100米的长方形,另一块是正方形.这两块地中哪块地的周长长些?多多少米?

小学五年级上册数学教学设计5

《方程的意义》一课是人教版小学数学五年级上册第四单元第二节的内容。学生在《方程的意义》之前,在一、二年级的数学学习中均有填算式中的括号,也就是未知数,对于方程的意义有了一定的知识渗透,在本单元中,学生已经学习了用字母表示

数,表示数量,表示数量间的关系,都与本节课有着密切的关系。而方程这部分知识,在初等代数中占有重要的地位,对于小学生来说,从具体事物的个数抽象出数是认识上的一个飞跃和,现在由具体的、确定的数过渡到用字母表示抽象的、可变的数,更是认识上的一个飞跃。而且在用字母表示未知数的基础上,使学生解决实际问题的数学工具,从列出算式发展到列出方程解,这又是数学思想方法认识上的一次飞跃,它将使学生运用数学知识解决实际问题能力提高到一个新的水平。方程这部分的学习,能使学生摆脱算术思维方法中的某些局限性,为进一步学习代数知识帮好认识的准备和铺垫。学生从算术方法解决问题到代数方法解决问题的过渡,这节课的概念学习也是后面学习解方程的方法、用方程解决问题的基础,因此,在教学中起着承上启下的作用。

根据学生的已有知识,以及《方程的意义》的教学内容,我确立了如下的教学目标:

1、了解方程的意义,弄清方程与等式的联系与区别。

2、在自主探究的学习过程中,结合教学内容帮助学生建立分类思想,进一步感受数学与生活之间的密切联系。

3、培养学生的动手操作能力、抽象概括能力,以及在合作学习中的的合作探究能力。

教学重点是在实践中了解方程的意义,并能根据方程的意义判断出方程,根据数量关系列出正确的方程。

下面我就将本节课的教学过程及设计意图向大家做以汇报。

一、谈话导入:

同学们,你们小时候玩儿过跷跷板吗?(同时出示图片)

对于这个游戏的玩儿法与经验,谁能向大家介绍一下?

其实在生活中,还有一样物品与跷跷板长得很像,它可不是用来游戏的,而是用来测量的。你们认识它吗?(出示天平)

【跷跷板与天平有许多相似之处,它们都是在中间有一个支点,都靠力臂两端的重量来达到平衡,都是根据杠杆的工作原理。但是对于学生而言,天平比较陌生,而跷跷板与学生的生活密切相关,因此,以此导入,能引起同学们的兴趣,学生回顾玩儿跷跷板的经验,利用已有的生活经验去为认识新事物奠定基础,形成表象】

二、认识并使用天平

教师介绍天平:

这就是一台托盘天平,它是用来测量比较轻的物体的仪器。这两个是天平的托盘,一边放物品,另一边放测量物体的砝码,

砝码上都有质量标志。我们通过不断调试砝码,直到中间的指针指向中间为两边平衡,物体的质量就是砝码质量之和。

教师示范:

下面我们就一起来进行实际应用天平来测量一下。

首先我们来应用一下,检查一下砝码的质量是否准确。

在天平的左边放置20克和30克的砝码各一个,右边我们应该放置一个50克的砝码。看一下,天平中间的指针正好指向刻度盘的中心,说明天平保持平衡了。

看到天平,你会用等式表示天平两边物体的质量关系吗?

20+30=50

这有一个空的水杯,我们先来测量一下它的重量。

请你估计一下它的重量。我们来试一试。

通过测量,我们得知,水杯的重量是100克。

现在我们缓缓向水杯里倒水,你发现天平怎么样了?

你知道我倒了多少水吗?水的质量是未知的,我们可以用字母x表示,那么现在天平的状态还能用等式来表示了吗?

100+X>100

我们继续测量水的质量,同理得出:

100+X>200

100+X<300

100+X=250

这几个算式都以板书形式呈现。

【在利用天平写出算式的过程中,我最开始设计的是给每个小组一台天平,让学生实际操作,测量物品的质量,但在实际教学中,发现天平中砝码过小,学生操作起来不方便,而且大部分时间都花费在调节砝码的过程中,而不是讨论方程的意义,与本节课的重难点相背离,因此在修改中,我们还是尊重了教材,以教师的示范为主,我们吸取了学生试验的教训,为了让学生看得真切,我们放弃了实物操作,选择了电脑课件的演示。】

三、认识方程

1、根据天平写算式并分类

刚才我们测量了水的质量,在测量过程中,我们出现了这几种情况,可以用不同的算式表示天平左右两边的位置关系,你明白了吗?下面老师这儿就有几组天平测量的过程,首先请你根据天平写出算式。然后把这些算式按一定的原则分分类,最后在小组内交流一下你们的结果。

【《20__年版数学课程标准》中将学生的“双基”增加为“四基”,其中“领悟数学基本思想”是新增加的内容。数学思想是数学知识和方法在更高层次上的抽象与概括,如抽象、分类、归纳、演绎、模型等。在传统教学中,我们比较提倡对概念的演绎,清楚地记得,十年前数学书对方程概念的呈现是这样的:通过天平保持平衡写出等式,然后得到结论。旧的数学课强调的是对概念的理解和应用,而新的课程标准中提倡要在数学学习中,使学生领悟数学的基本思想,积累数学的基本活动经验。因此,新的教材中增加了不等式,增加了不含未知数的算式,通过通过类比、分析、归纳,形成数学模型,在头脑中形成表象,再用严谨的语言来表述。

在本节课的设计中,我利用天平这一实物图,将数学知识置于情境之中,让学生参与到数学活动中,写出等式及不等式,含有未知数的和不含未知数的,。学生通过分类对比,形成表象,教师引出概念,使学生亲历知识的生成过程。】

2、交流汇报:

学生边说,教师边板书:

等式不等式

含有未知数3x=18050+2x>180

100+x=50x380<2x

不含未知数50x2=100100+20<100+30

根据板书,教师讲解:像3x=180、100+x=50x3这样的含有未知数的等式叫做方程,这就是我们今天所要学习的内容。板书课题。

反问:什么样的算式叫方程呢?一个算式要成为方程有哪几个条件?

【通过对比,学生能在脑海中形成一个清晰的方程表象,建立方程的模型,因此在教师讲授概念时,学生很容易地就接受了。教师是学习的组织者、引导者和合作者,但并不意味着教师可以什么都不讲,对于方程这个新知识,如果老师不告诉学生,学生是不能凭借旧知自己总结出来的,因此在概念的呈现上,我选择了讲授法。】

四、应用概念

同学们,根据你对方程的理解,你能自己写出几个方程吗?

判断,他们写得都对吗?

黑板上刚才我们写得这些算式,有方程吗?

【通过前面学生的活动归纳出概念,还要对概念进行演绎。练习题中,我先让学生自主写方程,就是考查学生对方程概念的理解,然后再进行判断的基本练习。】

五、方程产生的文化背景

早在三千六百多年前,埃及人就会用方程解决数学问题了。在我国古代,大约两千年前成书的《九章算术》中,就记载了用一组方程解决实际问题的资料。一直到三百年前,法国的数学家笛卡儿第一个提出用x、y、z等字母代表未知数,才形成了现在的方程。

【数学是人类文化的重要组成部分,任何一个数学知识的形成都凝聚着人类智慧与汗水。因此学生在学习前人给我们带来的经验同时,也要了解数学文化。通过这部分知识的讲解,学生对方程的产生有了初步的印象。】

六、拓展延伸

在拓展延伸中,我设计了这样几个题目:

1、根据线段图写方程

2、根据数量关系写方程

3、判断是否是方程

4、方程与等式的关系

七、作业:

利用课余小组时间用天平测量物体的重量。

再想,天平两边可以如何添加,能使天平继续保持平衡呢?

【课堂上的时间是有限的,虽然在前面的教学中,学生没有使用天平,但对天平都充满了好奇,因此,我把用天平测量物品的质量这个环节延伸到课下,学生不仅满足了自己的愿望,而且也是对本节课知识的巩固,我还设计了“天平两边可以如何添加,能使天平继续保持平衡呢?”发散学生的思维,也为下节课《天平保持平衡的性质》奠定了基础。】

小学五年级上册数学教学设计6

小数乘小数

教学目标

1、掌握小数乘法的计算法则,使学生掌握在确定积的小数位时,位数不够的,要在前面用0补足。

2、比较正确地计算小数乘法,提高计算能力。

3、培养学生的迁移类推能力和概括能力,以及运用所学知识解决新问题的能力。

教学重点小数乘法的计算法则。

教学难点小数乘法中积的小数位数和小数点的定位,乘得的积小数位数不够的,要在前面用0补足。

教具准备投影、口算小黑板。

教学过程

一、引入尝试

1、出示例3图:孩子们最近我们社区宣传栏的玻璃坏了,你能帮忙算算需要多大的一块玻璃吗?怎么列式?(板书:0.8×1.2)

2、尝试计算

师:上节课我们学习小数乘以整数的计算方法,想想是怎样算的?

师:是把小数转化成整数进行计算的。现在能否还用这个方法来计算1.2×0.8呢?

如果能,应该怎样做?(指名口答,板书学生的讨论结果。)

示范:

1.2扩大到它的10倍12

×0.8扩大到它的10倍×8

0.96缩小到它的1/10096

3、1.2×0.8,刚才是怎样进行计算的?

引导学生得出:先把被乘数1.2扩大10倍变成12,积就扩大10倍;再把乘数0.8扩大10倍变成8,积就又扩大10倍,这时的积就扩大了10×10=100倍。要求原来的积,就把乘出来的积96再缩小100倍。

4、观察一下,例3中因数与积的小数位数有什么关系?(因数的位数和等于积的小数位数。)想一想:6.05×0.82的积中有几位小数?6.052×0.82呢?

5、小结小数乘法的计算方法。

师:请做下面一组练习(1)练习(先口答下列各式积的小数位数,再计算)(2)引导学生观察思考。

①你是怎样算的?(先整数法则算出积,再给积点上小数点。)

②怎样点小数点?(因数中有几位小数,就从积的最右边起,数几位,点上小数点。)

③计算0.56×0.04时,你们发现了什么?那当乘得的积的小数位数不够时,怎样点小数点?(要在前面用0补足,再点小数点。)通过通过以上的学习,谁能用自己的话说说小数乘法的计算法则是怎样的?

(3)根据学生的回答,逐步抽象概括出P.5页上的计算法则,并让学生打开课本齐读教材上的法则。(勾画做记号)

(4)专项练习①判断,把不对的改正过来。

0.0240.013

×0.14×0.026

9678

2426

0.3360.000338

三、应用

1、在下面各式的积中点上小数点。

0.586.252.04

×4.2×0.18×28

232625408

2436112505712

2、做一做:先判断积里应该有几位小数,再计算。 67×0.32.14×6.2

3、P.8页5题。

先让学生说求各种商品的价钱需要知道什么?再让学生口答每种商品的重量,然后分组独立列式计算。

四、体验回忆这节课学习了什么知识?

五、作业:P87、9题。P913题。个人修改

口算:

5.2×0.2

7.3×0.01

76×0.03

75×0.05

0.05×6

79.2×0.2

②根据1056×27=28512,写出下面各题的积。

105.6×2.7=10.56×0.27=0.1056×27=1.056×0.27=

板书设计:

教后反思:小数乘小数的乘法是本单元的难点,学生在计算时错误较多,要继续多练,重点练习点小数点。

小学五年级上册数学教学设计7

梯形的面积

一、解析教材内涵

这部分内容的教学是在学习了平行四边形和三角形面积计算的基础上进行的。与前两节一样,教材先通过小轿车车窗玻璃是梯形的这样一个生活实例引入梯形面积计算。然后通过学生动手实验探索出面积计算公式,最后用字母表示出梯形的面积计算公式。但是要求又有提高,不再给出具体的方法,而是要求用学过的方法去推导梯形面积计算公式。这里仍然要运用转化成已学过图形的方法,但是从教材中学生的操作可以看出,方法与途径多了,可以用分割的方法,也可以用拼摆的方法;可以转化为三角形进行推导,也可以转化成平行四边形进行推导。梯形面积计算公式推导有多种方法,教材显示了三种方法。

(1)两个一样的梯形拼成一个平行四边形。

(2)把一个梯形剪成两个三角形。

(3)把一个梯形剪成一个平行四边形和一个三角形。

还可以:从梯形两腰中点的连线将梯形剪开,拼成一个平行四边形,等等。

策略与方法:

(1)加强知识之间的联系,根据图形面积计算之间的内在联系安排教学顺序,以促进知识的迁移和学习能力的提高。

(2)体现动手操作、合作学习的学习方式,让学生经历自主探索的过程

(3)重视动手操作与实验,引导学生探究,渗透“转化”思想,注意培养学生用多种策略解决问题的意识和能力。

“梯形面积的计算”

二、复习导入

1、单元知识梳理,揭示转化思想

师:同学们,我们在多边形的面积这一单元已经学习了平行四边形和三角形面积计算方法,那谁来说说怎样计算它们的面积?

师:请大家回忆一下,它们的面积计算方法是怎么推导出来的?

2、导入主题

师:我们都是把它们转化成学过的图形来研究面积。看来转化这种方法能帮助我们解决很多问题,今天这节课我们就借助这个方法来研究梯形的面积。(板书课题:梯形的面积)

三、利用转化,实践探究1、初步的想法,互受启发

师:同学们来看,这是一个梯形。现在呀,就请大家想一想,怎样利用转化的方法知道梯形的面积怎样来计算呢?

2、动手实践,主动探知。

师:大家这样一说,我们的思路就打开了。其实还有很多方法,同学们没有说到。接下来我们就按照这个学习提纲深入地探究梯形面积的计算方法。

1、运用转化的方法,将梯形转化成学过的图形。

2、借助学过的方法推导梯形面积的计算方法。

3、填写学习单,小组进行交流。

3、交流反馈(学生拿学具到实物展台汇报,教师拿事先预设的大教具评价,记录)

预设:代表1:两个完全一样的梯形可以拼成一个平行四边形,这个平行四边形的底等于梯形的(上底+下底),这个平行四边形的高等于梯形的高,每个梯形的面积等于拼成的平行四边形面积的一半,所以:

s=(a+b)×h÷2

代表2:把一个梯形分成两个三角形,其中一个三角形的底等于梯形的上底,高等于梯形的高;另一个三角形的底等于梯形的下底,高等于梯形的高。所以:梯形的面积=三角形1的面积+三角形2的面积

=梯形上底×高÷2+梯形下底×高÷2

=ah÷2+bh÷2

代表3:我把一个梯形分成一个平行四边形和一个三角形。平行四边形的底等于梯形的上底,平行四边形的高等于梯形的高;而三角形的底等于(梯形的下底-梯形的上底),三角形的高等于梯形的高。所以:梯形的面积=平行四边形面积+三角形面积

=平行四边形的底×高+三角形的底×高÷2

=ah+(b-a)h÷2

代表4:把梯形上下对折,沿着折痕剪开成两部分,并拼成一个平行四边形,平行四边形的底等于(梯形的上底+梯形的下底),平行四边形的高等于梯形的高÷2,梯形的面积等于拼成的平行四边形的面积。所以:

(a+b)×(h÷2)

4、总结规律

师:同学们把梯形转化成我们学过的图形,推导出它的面积计算方法,并用字母式表示了出来。大家来看:教师将以上的公式整理成统一的公式。

5、找联系,字母归一

师:看来无论哪种方法我们都可以总结为梯形的面积计算方法就是

板书:梯形的面积=(上底+下底)×高÷2

S=(a+b)×h÷2

6、全课总结

师:同学们用了不同的方法推导出梯形的面积的计算公式是......

四、课堂练习,知识巩固学生练习本打8个格子,训练小组长批改。

1、口答:列式计算。(梯形图形3道)

2、解决问题(梯形大坝)

3、车玻璃贴膜。(4个条件)快速列式?今后要选择需要的条件来解决问题。

4、篱笆问题(书中课后练习)仔细读题,认真思考,在本子上列出算式,自批。

靠墙边围一个花坛,围花坛的篱笆长46米,求这个花坛的面积?

课件出示:闪3条边,闪上下边。为什么是3条边?

五、课堂反馈,作业预留

1、基本练习数学书90页第1题

2、解决问题:90页第2题、124页

3、变式练习:97页第1题。

4、阅读作业:①、还有哪些方法?②、阅读数学书。


更多推荐

学生,面积,平行四边形,方法,方程