2023年12月2日发(作者:郑州市数学试卷中考版)
2022-2023学年北京市西城区八年级(下)期末数学试卷一、选择题(共16分,每题2分)1.(2分)下列各式中,是最简二次根式的是(A.B.C.)D.2,,3)D.2.(2分)以下列各组数为边长,能构成直角三角形的是(A.2,3,3B.2,3,4)C.)C.2,3,53.(2分)下列计算,正确的是(A.B.D.4.(2分)下列命题正确的是(A.对角线相等的四边形是平行四边形B.对角线相等且互相平分的四边形是菱形C.对角线垂直且互相平分的四边形是矩形D.对角线垂直、相等且互相平分的四边形是正方形5.(2分)在Rt△ABC中,∠ACB=90°,D为斜边AB的中点.若AC=8,BC=6,则CD的长为()A.10B.6C.5D.46.(2分)小雨在参观故宫博物院时,被太和殿窗棂的三交六惋菱花图案所吸引,他从中提取出一个含角的菱形ABCD(如图1所示).若AB的长度为a,则菱形ABCD的面积为()第1页(共8页)A.B.C.a2D.7.(2分)台风影响着人们的生产和生活.人们为研究台风,将研究条件进行一定的合理简化,把近地面风速画在一个以台风中心为原点,以台风半径为横轴,风速为纵轴的坐标系中,并在图中标注了该台风的12级、10级和7级风圈半径,如12级风圈半径是指近地面风速衰减至32.7m/s时,离台风中心的距离约为150km.那么以下关于这场台风的说法中,正确的是()A.越靠近台风中心位置,风速越大B.距台风中心150km处,风速达到最大值C.10级风圈半径约为280kmD.在某个台风半径达到最大风速之后,随台风半径的增大,风速又逐渐衰减8.(2分)在平面直角坐标系xOy中,矩形OABC,A(0,3),B(2,3),C(2,0),点M在边OA上,OM=1.点P在边AB上运动,连接PM,点A关于直线PM的对称点为A′.若PA=x,MA′+A′B=y,下列图象能大致反映y与x的函数关系的是()A.B.第2页(共8页)C.D.二、填空题(共16分,每题2分)9.(2分)若10.(2分)若在实数范围内有意义,则实数x的取值范围是+=0,则a=,b=..11.(2分)若△ABC的周长为6,则以△ABC三边的中点为顶点的三角形的周长等于.12.(2分)某商场招聘员工,现有甲、乙两人参加竞聘,通过计算机、语言和商品知识三项测试,他们各自成绩(百分制)和各项占比如下表所示,那么从甲、乙两人各自的平均成绩看,应该录取:测试项目在平均成绩中的占比甲的成绩乙的成绩.计算机50%7090语言30%8080商品知识20%907013.(2分)如图,直线y=mx+n与直线y=kx+b的交点为A,则关于x,y的方程组的解是.14.(2分)小杰利用教材中的剪纸活动设计了一个魔术.他将一个长方形纸片对折两次,剪下一个角(如图1),展平后得到一个带正方形孔洞的魔术道具(如图2),这个正方形孔洞ABCD的边长为2cm(如图4).他试图将一个直径为3cm的圆形铁环(铁环厚度忽略不计)穿过这个孔洞,没有成功,于是他对这个道具进行折叠、旋转(如图5、图6),并调整纸片产生一个新的“孔洞”(如图3).请你计算调整前后的孔洞最“宽”处的“宽第3页(共8页)度”来说明魔术的效果.如图4中的“宽度”BD==cm.cm;图6中的“宽度”BD′′15.(2分)如图,在▱ABCD中,BE平分∠ABC交AD于点E,CF平分∠BCD交AD于点F,BE与CF的交点在▱ABCD内.若BC=5,AB=3,则EF=.16.(2分)在△ABC中,BC=3,BD平分∠ABC交AC于点D,DE∥BC,交AB于点E,EF∥AC交BC于点F.有以下结论:①四边形EFCD一定是平行四边形;②连接DF所得四边形EBFD一定是平行四边形;③保持∠ABC的大小不变,改变BA的长度可使BF=FC成立;④保持BA的长度不变,改变∠ABC的大小可使BF=FC成立.其中所有的正确结论是:.(填序号即可)三、解答题(共68分,第17题10分,第18题7分,第19题9分,第20题8分,第21题9分,第22题6分,第23题10分,第24题9分)17.(10分)计算:(1);(2)()()﹣.18.(7分)在平面直角坐标系xOy中,直线m:y=2x+6与x轴的交点为A,与y轴的交点为B.将直线m向右平移3个单位长度得到直线l.(1)求点A,点B的坐标,画出直线m及直线l;(2)求直线l的解析式;第4页(共8页)(3)直线l还可以看作由直线m经过其他方式的平移得到的,请写出一种平移方式.19.(9分)尺规作图:过直线外一点作这条直线的平行线.已知:如图,直线l及直线l外一点P.求作:直线m,使得m∥l,且直线m经过点P.作法:①在直线l上取一点A,连接AP,以点A为圆心,AP的长为半径画弧,交直线l于点B;;②分别以点P,点B为圆心,AP的长为半径画弧,两弧交于点C(不与点A重合)③经过P,C两点作直线m.直线m就是所求作的直线.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接BC.∵AP===,)(填推理的∴四边形PABC是依据).∴m∥l((填“矩形”“菱形”或“正方形”)()(填推理的依据).第5页(共8页)20.(8分)如图,在▱ABCD中,AE⊥BC于点E,CF⊥AD于点F.(1)求证:四边形AECF是矩形;(2)连接BD,若∠CBD=30°,BC=5,,求DF的长.21.(9分)已知甲、乙两地相距60km,小徐和小马两人沿同一条公路从甲地到乙地,小徐骑自行车3h到达.小马骑摩托车比小王晚1h出发,骑行30km时追上小徐,停留nh后继续以原速骑行.在整个行程中,两人与甲地的距离y与小徐骑行时间x的对应关系分别如图中线段OA和折线段BCDE所示,DE与OA的交点为F.(1)线段OA所对应的函数表达式为线段BC所对应的函数表达式为(2)小马在BC段的速度为,相应自变量x的取值范围是,相应自变量x的取值范围是km/h,n=;;;(3)求小马第二次追上小徐时与乙地的距离.22.(6分)某校为了解课外阅读情况,在初二年级的两个班中,各随机抽取部分学生调查了他们一周的课外阅读时长(单位:小时),并对数据进行了整理、描述和分析.下面给出了部分信息.a.甲班学生课外阅读时长(单位:小时):7,7,8,9,9,11,12.b.乙班学生课外阅读时长的折线图:第6页(共8页)c.甲、乙两班学生阅读时长的平均数、众数、中位数:平均数甲班乙班根据以上信息,回答下列问题:(1)写出表中m,t,n的值;(2)设甲、乙两班数据的方差分别为,,则(填“>”“=”或“<”).m9中位数9n众数t923.(10分)在平面直角坐标系xOy中,对于非零的实数a,将点P(x,y)变换为称为一次“a﹣变换”.例如,对点P(2,3)作一次“3﹣变换”,得到点P′(6,1).已知直线y=﹣2x+4与x轴交于点A,与y轴交于点B.若对直线l上的各点分别作同样的“a﹣变换”,点A,B变换后的对应点分别为A′,B′.(1)当a=﹣2时,点A′的坐标为;;(2)若点B′的坐标为(0,6),则a的值为(3)以下三个结论:①线段AB与线段A′B′始终相等;②∠BAO与∠B′A′O始终相等;③△AOB与△A′OB′的面积始终相等.其中正确的是(填写序号即可),并对正确的结论加以证明.24.(9分)在菱形ABCD中,∠ABC=60°,M,N两点分别在AB,BC边上,BM=BN.连接DM,取DM的中点K,连接AK,NK.(1)依题意补全图1,并写出∠AKN的度数;(2)用等式表示线段NK与AK的数量关系,并证明;(3)若AB=6,AC,BD的交点为O,连接OM,OK,四边形AMOK能否成为平行四边形?若能,求出此时AM的长;若不能,请说明理由.第7页(共8页)四、选做题(共10分,第25题4分,第26题6分)25.(4分)在单位长度为1的正方形网格中,如果一个凸四边形的顶点都是网格线交点,我们称其为格点凸四边形.如图,在平面直角坐标系xOy中,矩形ORST的四个顶点分别为O(0,0),R(0,5),S(8,5),T(8,0).已知点E(2,4),F(0,3),G(4,2).若点P在矩形ORST的内部,以P,E,F,G四点为顶点的格点凸四边形的面积为6,所有符合题意的点P的坐标为.26.(6分)在平面直角坐标系xOy中,对于正方形ABCD和它的边上的动点P,作等边△OPP\',且O,P,P′三点按顺时针方向排列,称点P\'是点P关于正方形ABCD的“友好点”.已知A(﹣a,a),B(a,a),C(a,﹣a),D(﹣a,﹣a)(其中a>0).(1)如图1,若a=3,AB的中点为M,当点P在正方形的边AB上运动时,,点P′恰好都在正方形的边AB上,①若点P和点P′关于正方形ABCD的“友好点”则点P\'的坐标为;点M关于正方形ABCD的“友好点”点M′的坐标为;,直接写出n与m的关系式②若记点P关于正方形ABCD的“友好点”为P′(m,n)(不要求写m的取值范围);(2)如图2,E(﹣1,﹣1),F(2,2).当点P在正方形ABCD的四条边上运动时,若线段EF上有且只有一个点P关于正方形ABCD的“友好点”,求a的取值范围;(3)当2≤a≤4时,直接写出所有正方形ABCD的所有“友好点”组成图形的面积.第8页(共8页)2022-2023学年北京市西城区八年级(下)期末数学试卷参考答案与试题解析一、选择题(共16分,每题2分)1.【分析】最简二次根式必须满足两个条件:①被开方数不含分母;②被开方数不含能开得尽方的因数或因式.【解答】解:A.B.C.D.故选:B.【点评】本题考查了最简二次根式的知识,熟练掌握最简二次根式的定义是解答本题的关键.2.【分析】根据勾股定理的逆定理对各选项进行逐一分析即可.【解答】解:A、∵22+32≠32,∴不能够成直角三角形,不符合题意;B、∵22+32≠42,∴不能够成直角三角形,不符合题意;C、∵22+32≠52,∴不能够成直角三角形,不符合题意;D、∵22+(故选:D.【点评】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解题的关键.3.【分析】根据二次根式的加法,乘法,除法法则,二次根式的性质进行计算,逐一判断即可解答.【解答】解:A、B、C、D、与=3,故A不符合题意;)2=32,∴能够成直角三角形,符合题意.,不是最简二次根式,不符合题意;是最简二次根式,符合题意;,不是最简二次根式,不符合题意;不是最简二次根式,不符合题意.不能合并,故B不符合题意;=×=2×3,故C符合题意;,故D不符合题意;÷2=2÷2=故选:C.【点评】本题考查了二次根式的混合运算,准确熟练地进行计算是解题的关键.第1页(共17页)4.【分析】根据矩形,菱形,正方形的判定定理逐项判断.【解答】解:对角线互相平分的四边形是平行四边形,故A错误,不符合题意;对角线垂直且互相平分的四边形是菱形,故B错误,不符合题意;对角线相等且互相平分的四边形是矩形,故C错误,不符合题意;对角线垂直、相等且互相平分的四边形是正方形,故D正确,符合题意;故选:D.【点评】本题考查命题与定理,解题的关键是掌握矩形,菱形,正方形的判定定理.5.【分析】先在Rt△ABC中,利用勾股定理求出AB的长,然后再利用直角三角形斜边上的中线性质可得CD=AB=5,即可解答.【解答】解:∵∠ACB=90°,AC=8,BC=6,∴AB===10,∵D为斜边AB的中点,∴CD=AB=5,故选:C.【点评】本题考查了直角三角形斜边上的中线,勾股定理,熟练掌握直角三角形斜边上的中线性质,以及勾股定理是解题的关键.6.【分析】过A作AH⊥BC于H,由四边形ABCD是菱形,得到AB=BC=a,又∠B=60°,推出△ABC是等边三角形,求出AH=【解答】解:过A作AH⊥BC于H,∵四边形ABCD是菱形,∴AB=BC=a,∵∠B=60°,∴△ABC是等边三角形,∴AH=AB=a,a2.a,即可求出菱形ABCD的面积.∴菱形ABCD的面积=BC•AH=故选:B.【点评】本题考查菱形的面积,等边三角形的判定和性质,菱形的面积,关键是由菱形的性质,推出△ABC是等边三角形.第2页(共17页)7.【分析】根据题目建立的函数模型,结合所给的函数图象,可以分析出风速随台风半径的变化情况,进而解决问题.【解答】解:A、根据图象可知,在图象的前段部分,风速随台风半径的增大而增大,则越靠近台风中心位置,风速越小(最小为10m/s),故A选项不符合题意;B、根据图象可知,台风半径小于100km时,风速已达到最大值,故B选项不符合题意;C、根据图象可知,10级风圈的台风半径为200km,风速为24.5m/s,故C选项不符合题意;D、根据图象可知,风速先是随台风半径的增大而增大,风速达到最大之后,又随台风半径的增大而减小,故D选项符合题意.故选:D.【点评】本题考查了用函数思想解决实际问题,以及对给定图象的理解能力.8.【分析】先根据坐标和轴对称的性质得到MA=MA\'=2,进而得到y=2+A\'B,然后再根据函数图象确定极值点的函数值,可排除D;然后再根据函数的最小值时,x的范围即可解答.【解答】解:∵A(0,3),B(2,3),C(2,0),∴OA=3,AB=2,∵OM=1∴MA=MA\'=2,∵MA\'+A\'B=y,∴y=2+A\'B,当x=0时,A与A\'重合,A\'B=2,此时,y=2+2=4;当x=2时,P与B重合,AB=A\'B=2此时,y=2+2=4;故可排除D选项.∵当点M、A\'、B三点共线时,y最小,此时,AP=PA\'=A\'B,∠PA\'B=90°,∴x+x=2,∴x<1,∴当y最小值时,x<1,可排除B、C.故选:A.【点评】本题主要考查了函数图象的确定,掌握排除法解答的方法是本题的关键.第3页(共17页)二、填空题(共16分,每题2分)9.【分析】根据二次根式有意义的条件得到x﹣2≥0,解之即可求出x的取值范围.【解答】解:根据题意得:x﹣2≥0,解得:x≥2.故答案为:x≥2.【点评】本题考查了二次根式有意义的条件,解题的关键是掌握二次根式有意义时被开方数是非负数.10.【分析】直接利用非负数的性质得出答案.【解答】解:∵+=0,∴a﹣1=0,b﹣5=0,∴a=1,b=5.故答案为:1,5.【点评】此题主要考查了非负数的性质,正确掌握算术平方根的定义是解题关键.11.【分析】由三角形的中位线定理可知,以三角形三边中点为顶点的三角形的周长是原三角形周长的一半.【解答】解:如图示,点D、E、F分别是AB、AC、BC的中点,∴DE=BC,DF=AC,EF=AB,∵原三角形的周长为6,则新三角形的周长为×6=3.故答案为:3.【点评】本题考查三角形的中位线,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.12.【分析】根据加权平均数的计算公式分别列出算式,再进行计算即可.【解答】解:甲的平均成绩为:70×50%+80×30%+90×20%=77(分),乙的平均成绩为:90×50%+80×30%+70×20%=83(分),∵83>77,∴应该录取乙.故答案为:乙.第4页(共17页)【点评】此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键,是一道基础题.13.【分析】根据两条直线的交点的意义即可解答.【解答】解:由函数图象可知,直线y=mx+n与直线y=kx+b的交点为A(1,3),∴方程组故答案为:的解是..【点评】本题主要考查一次函数图象的交点与方程组的解的关系,理解两条直线的交点坐标的意义是解题的关键.14.【分析】根据正方形的性质及勾股定理可知BD的长为质可知BD″=2BC=4cm.【解答】解:∵正方形孔洞ABCD的边长为2cm,∴对角线BD的长为==2(cm),;由旋转性质及折叠的性如图5,由旋转性质可知CB=CD\'=2cm,如图6,由折叠的性质可知BD″=2BC=4cm,故答案为:;4.【点评】本题考查了折叠的性质,旋转的性质,正方形的性质,勾股定理,掌握折叠的性质及旋转的性质是解题的关键.15.【分析】由平行线的性质和角平分线的性质可求∠ABE=∠AEB,可得AB=AE=3,DF=CD=3,即可求解.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD=3,AD∥BC,AD=BC=5,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE=3,同理可得:DF=CD=3,∴EF=AE+DF﹣AD=3+3﹣5=1,故答案为:1.第5页(共17页)【点评】本题考查了平行四边形的性质,角平分线的性质,及等腰三角形的判定和性质,题目比较简单.16.【分析】根据两组对边分别平行的四边形是平行四边形可判断①;只有一组对边平行,不能证明四边形EBFD一定是平行四边形,故可判断②;保持∠ABC的大小不变,改变BA的长度能使BF=FC成立,故可判断③;保持BA的长度不变,改变∠ABC的大小不一定能使BF=FC成立,故可判断④.【解答】解:∵DE∥BC,EF∥AC,∴四边形EFCD是平行四边形,故①正确;只有一组对边平行,不能证明四边形EBFD一定是平行四边形,故②错误;改变BA的长度,BD与AC的交点为中点时,则AD=DC,∵DE∥BC,∴=1,∴AE=BE,即E为AB的中点,∴DE是△ABC的中位线,∴DE=BC,∵四边形EFCD是平行四边形,∴DE=FC,∵DE=BC,∴DE=BF,∴BF=FC,故③正确;保持BA的长度不变且AB=BC=3时,∵BD平分∠ABC,∴D为AC的中点,同③,改变∠ABC的大小都能使BF=FC,但当BA的长度不变且不等于3时,不可能使BF=FC成立,故④错误,所以,正确的结论是①③,故答案为:①③.【点评】本题主要考查了平行四边形的判定以及三角形中位线定理的应用、等腰三角形第6页(共17页)的性质,熟练掌握相关知识是解答本题的关键.三、解答题(共68分,第17题10分,第18题7分,第19题9分,第20题8分,第21题9分,第22题6分,第23题10分,第24题9分)17.【分析】(1)先根据二次根式的乘法法则和二次根式的性质进行计算,再根据二次根式的减法法则进行计算即可;(2)先根据平方差公式和二次根式的性质进行计算,再算减法即可.【解答】解:(1)=4=﹣3;)()﹣×+(2))(=6﹣2﹣5=﹣1.【点评】本题考查了二次根式的混合运算和平方差公式,能正确根据二次根式的运算法则进行计算是解此题的关键,注意运算顺序.18.【分析】(1)y=2x+6与x轴的交点为A,与y轴的交点为B.令x=0,则y=6,令y=0,y=﹣3,解答即可;(2)根据解析式的平移规律:左加右减可得出平移后的直线解析式.(3)根据平移规律解答即可.【解答】解:(1)直线m:y=2x+6与x轴的交点为A,与y轴的交点为B.令x=0,则y=6,令y=0,y=﹣3,∴A(﹣3,0),B(0,6);(2)∵将直线m向右平移3个单位长度得到直线l.∴y=2(x﹣3)+6=2x;(3)y=2x可看作直线y=2x+6向下平移6个单位得到的.【点评】本题考查了一次函数图象与几何变换:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当直线平移时k不变,当向上平移m个单位,则平移后直线的解析式为y=kx+b+m.第7页(共17页)19.【分析】(1)根据作法作出图形即可;(2)根据作法和菱形的性质,判定定理填空即可.【解答】解:(1)如图:(2)证明:连接BC.∵AP=AB=BC=CP,∴四边形PABC是菱形(四边相等的四边形是菱形).∴m∥l(菱形的对边平行).故答案为:AB,BC,CP,菱形,四边相等的四边形是菱形,菱形的对边平行.【点评】本题考查作图﹣复杂作图,解题的关键是掌握菱形的判定与性质.20.【分析】(1)证∠AEC=∠AFC=∠EAF=90°,即可得出结论;(2)过D作DH⊥BC于点H,则四边形DFCH是矩形,得DF=CH,再由含30°角的直角三角形的性质得DH=2,然后由勾股定理得BH=6,即可解决问题.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∵AE⊥BC,CF⊥AD,∴AE⊥AD,∠AEC=∠AFC=90°,∴∠EAF=90°,∴四边形AECF是矩形;(2)解:如图,过D作DH⊥BC于点H,则∠DHB=90°,四边形DFCH是矩形,∴DF=CH,∵∠CBD=30°,∴DH=BD=2∴BH=,==6,,∴CH=BH﹣BC=6﹣5=1,第8页(共17页)∴DF=1,即DF的长为1.【点评】本题主要考查了矩形的判定与性质、平行四边形的性质以及勾股定理等知识,熟练掌握矩形的判定与性质是解题的关键.21.【分析】(1)由题意得,线段OA是小徐的函数图象,折线段BCDE是小马的函数图象,根据速度=路程+时间,求出小徐的速度,即可求出线段OA所对应的函数表达式;再求出小徐骑行30km的时间,进而求出小马的骑行速度,从而求出线段BC所对应的函数表达式,再求出对应的自变量的取值范围即可.(2)根据(1)所求即可得到答案;(3)设小马在小徐出发小时后第二次追上小徐,根据两人相遇时,所走的路程相同列出方程求解即可.【解答】解:(1)由题意得,线段OA是小徐的函数图象,折线段BCDE是小马的函数图象,∴小徐的骑行速度为60÷3=20km/h,∴线段OA所对应的函数表达式为y=20x,其中相应自变量x的取值范围是0≤x≤3;在y=20x中,当y=20x=30,x=1.5,∴在小徐出发1.5h时,小马追上小徐,∴小马的骑行速度为=60km/h,∴线段BC所对应的函数表达式为y=60(x﹣1)=60x﹣60,其中相应自变量x的取值范围是1≤x≤1.5;故答案为:y=20x,0≤x≤3,y=60x﹣60,1≤x≤1.5;(2)由(1)得小马在BC段的速度为60km/h,n=2﹣1.5=0.5,故答案为:60,0.5;(3)设小马在小徐出发1小时后第二次追上小徐,由题意得,20t=30+60(t﹣2),解得t=2.25,∴小马在小徐出发2.25小时后第二次追上小徐,∴小马第二次追上小徐时与乙地的距离为60﹣2.25x20=15km.第9页(共17页)【点评】本题主要考查了从函数图象获取信息,一元一次方程的实际应用,正确读懂函数图象是解题的关键.22.【分析】(1)分别根据算术平均数的定义,中位数的定义以及众数的定义解答即可;(2)根据两组数据的波动情况即可判断.【解答】解:(1)由题意得,m=(7+7+8+9+9+11+12)=9,把乙班的数据从小到大排列,排在中间的数是9,故中位数b=9,甲班的数据中7和9出现的次数最多,故众数t=7、9;(2)由题意得,甲组数据在7至11之间波动,波动范围较小,乙组数据在5只14之间波动,波动范围较大,所以<.故答案为:<.【点评】本题考查了折线统计图:折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.23.【分析】(1)求出A(2,0),B(0,4),即可得点A′的坐标为(﹣2×2,4,0);(2)根据B′的坐标为(0,6),得=6,解得a=;(3)由A(2,0),B(0,4),A\'(2a,0),B\'(0,),可知①线段AB与线段A′B′始终相等不正确;②∠BAO与∠B′A′O始终相等不正确;③△AOB与△A′OB′的面积始终相等正确.【解答】解:(1)在y=﹣2x+4中,令x=0得y=4,令y=0得x=2,∴A(2,0),B(0,4),当a=﹣2时,点A′的坐标为(﹣2×2,故答案为:(﹣4,0);(2)∵B′的坐标为(0,6),∴=6,解得a=,第10页(共17页)),即(﹣),即(﹣4,0),经检验,a=是原方程的解,故答案为:;(3)∵A(2,0),B(0,4),A\'(2a,0),B\'(0,),∴AB=2,A\'B\'=2,当a2=1时,AB=A\'B\',故①线段AB与线段A′B′始终相等不正确;∵=2,=,∴②∠BAO与∠B′A′O始终相等不正确;∵△AOB的面积为×2×4=4,△A′OB′的面积为×|2a|×||=4,∴③△AOB与△A′OB′的面积始终相等正确;故答案为:③.【点评】本题考查考查一次函数的综合应用,涉及新定义,解题的关键是读懂题意,理解“a﹣变换”.24.【分析】(1)延长AK,交CD于点E,连接AC,NE,利用全等三角形的判定与性质得到AM=DE,进而利用等式的性质得到BM=CE,则BN=CE;利用全等三角形的判定与性质得到AN=AE,利用等式的性质得到∠NAE=60°,则△DAE为等边三角形,利用等腰三角形的三线合一的性质可得AK⊥AE,则结论可求;(2)利用等边三角形的性质和等腰三角形的三线合一的性质得到∠ANK=30°,再利用含30°角的直角三角形的性质和勾股定理解答即可;(3)依题意画出图形,利用平行四边形的性质和三角形的中位线定理解答即可得出结论.【解答】解:(1)依题意补全图形如下:延长AK,交CD于点E,连接AC,NE,如图,∵四边形ABCD为菱形,∴AB=CD,AB∥CD,∴∠AMD=∠EDM.在△AMK和△EDK中,,第11页(共17页)∴△AMK≌△EDK(ASA),∴AK=KE,AM=DE,∴AB﹣AM=CD﹣DE,即BM=CE.∵BM=BN,∴BN=CE.∵在菱形ABCD中,∠ABC=60°,∴△ABC为等边三角形,∴AB=AE,∠ABC=∠ACB=∠ACE=60°.在△ABN和△ACE中,,∴△ABN≌△ACE(SAS),∴AN=AE,∠BAN=∠CAE,∴∠BAN+∠NAC=∠NAC+∠CAE,即∠BAC=∠NAE=60°,∴等腰△DAE为等边三角形,∴NA=NE,∵AK=KE,∴NK⊥AE,∴∠AKN=90°;(2)段NK与AK的数量关系为:NK=由(1)知:△DAE为等边三角形,∴∠ANE=60°,∵NK⊥AE,∴∠ANK=∠ANE=30°,∴AK=AN.设AK=a,则AN=2a,∴NK===a,AK.理由:第12页(共17页)∴NK=AK;(3)四边形AMOK能成为平行四边形,如图,∵四边形AMOK为平行四边形,∴OK=AM.∵四边形ABCD为平行四边形,∴BO=OD,∵MK=DK,∴OK为△DMB的中位线,∴OK=BM,∴AM=BM,∴BM=2AM,∵AB=AM+BM=6,∴3AM=6,∴AM=2.∴四边形AMOK能成为平行四边形,此时AM的长为2.【点评】本题主要考查了菱形的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰三角形的性质,平行四边形的性质,三角形的中位线,含30°角的直角三角形的性质,勾股定理,熟练掌握菱形,平行四边形的性质是解题的关键.四、选做题(共10分,第25题4分,第26题6分)25.【分析】根据题意理解凸四边形的含义,顶点必须在网格线交点,则可以通过先画出△FEG,可进一步标出符合的点.【解答】解:如图:第13页(共17页)可计算出S△EFG=3为使四边形面积为6,则分别以EG、FG、EF构造三角形的面积为3,因为凸四边形的的顶点都必须在网格线交点,则可以得出P可能所在的点:P1(4,5)、P2(5,4)、P3(6,3)、P4(7,2)P5(2,1)其中P1(4,5)时,构成的是三角形不是四边形,所以P可能的坐标为(5,4)或(6,3)或(7,2)或(2,1).【点评】根据题意理解凸四边形的含义,顶点必须在网格线交点,则可以通过先画出△FEG,可进一步标出符合的点.26.【分析】(1)①如图,OP=OP\'=PP\',Rt△OMP中,OM2+MP2=OP2,解得MP\'=得P\'(OF=,,3);如图,过点M作MF⊥x轴,垂足为F,则∠OFM=90°,OM′=3,=,得M\'(,):②如图,直线PM交轴于点G,可证△POM≌△P′OM′,得∠OM′P′=∠OMP=90°,∠OGM′=60°,可知点P′(m,n)在直线M′G上,设直线解析式为y=kx+b(k≠0),求得k=﹣,b=6,于是n=﹣m+6;a,0),可求得直(2)由(1)知若A(﹣a,a),则OM′=OM=a.求得点G(线A′B′解析式y=﹣y=﹣x+2a,经过F(2,2),得a=;于是+1,直线C′D′解析式为<a≤+1;x+2a,经过(﹣1,﹣1),得a=(3)如图,分别求得a=2时,a=4时,点P′轨迹所在四边形的面积,相减即得所有“友好点”组成图形的面积为48.【解答】(1)(,3);(,);如图,OP=OP\'=PP\',第14页(共17页)∴PM=P′M,OM=3,∠MOP=∠MOP′=30°,∴OP′=2MP′,∴Rt△OMP中,OM2+MP2=OP2,∴32+MP′2=(2MP′)2,解得MP\'=∴P(,3);,如图,过点M′作M′F⊥x轴,垂足为F,则∠OFM′=90°,OM′=3,∴∠M′OF=90°﹣∠MOM′=30°,∴M′F=OM′=,∴OF=∴M′(②n=﹣=,);m+6;,如图,直线P′M′交x轴于点G,∵∠POP′=∠MOM′=60°,∴∠POP′﹣∠MOP′=∠MOM′﹣∠MOP′,即∠POM=∠P′OM′,又∵OP=OP′,OM=OM′,∴△POM≌△P′OM′(SAS),∴∠OM′P′=∠OMP=90°,∵∠MOG=90°﹣60°=30°,∴∠OGM′=90°﹣∠M′OG=90°﹣30°=60°,点P′(m,n)在直线M′G上,设直线解析式为y=kx+b(k≠0),则,第15页(共17页)解得∴n=﹣,m+6;(2)如上图,由(1)知若A(﹣a,a),则OM′=OM=a,在Rt△OM′G中,M′G=OG,∴a2+(OG)2=OG2,解得OG=a,即点G(a,0),由(1)知点P在线段AB上时,直线P′M′与x轴相交锐角为60°,可设直线M′G为y=﹣故点P′在直线y=﹣x+q,代入G(a,0),解得q=2a,x+2a,x+2a上,即A′B′解析式为y=﹣如下图,同理可得,直线C′D′解析式为y=﹣=﹣5×(﹣1)﹣2a,解得a=;x﹣2a,经过(﹣1,﹣1),则一1如下图,直线A′B′的解析式为y=﹣解得a=+1.x+2a,经过F(2,2),则2=﹣×2+2a,∴<a≤+1;第16页(共17页)(3)如图,当a=2时,点P′轨迹所在四边形A′B′C′D′的面积为(2×2)2=16,当a=4时,点P′轨迹所在四边形的面积为(2×4)2=64,故2≤a≤4时,正方形ABCD的所有“友好点”组成图形的面积为64﹣16=48.【点评】本题考查图形变换旋转,全等三角形,一次函数,等边三角形性质,正方形性质,勾股定理,具备动态思维能力,理解动点形成的图形的形状是解题的关键。第17页(共17页)
更多推荐
性质,直线,考查,四边形
发布评论