2023年12月10日发(作者:北京中学一模数学试卷)
第一次练习
教学要求:熟练掌握Matlab软件的基本命令和操作,会作二维、三维几何图形,能够用Matlab软件解决微积分、线性代数与解析几何中的计算问题。
补充命令
vpa(x,n) 显示x的n位有效数字,教材102页
fplot(‘f(x)’,[a,b]) 函数作图命令,画出f(x)在区间[a,b]上的图形
在下面的题目中m为你的学号的后3位(1-9班)或4位(10班以上)
1.1 计算lim程序:
syms x
limit((1001*x-sin(1001*x))/x^3,x,0)
结果:
程序:
syms x
limit((1001*x-sin(1001*x))/x^3,x,inf)
结果:
0
1.2
yexcos程序:
syms x
diff(exp(x)*cos(1001*x/1000),2)
结果:
mx,求y\'\'
1000mxsinmxmxsinmx与
limx0xx3x3-2001/1000000*exp(x)*cos(1001/1000*x)-1001/500*exp(x)*sin(1001/1000*x) 1.3 计算00ex程序:
112y2dxdy
dblquad(@(x,y) exp(x.^2+y.^2),0,1,0,1)
结果:
x4dx
1.4 计算22m4x程序:
syms x
int(x^4/(1000^2+4*x^2))
结果:
1.5
yexcosmx,求y(10)
程序:
syms x
diff(exp(x)*cos(1000*x),10)
结果:
1.6 给出程序:
syms x
taylor(sqrt(1001/1000+x),5)
结果:
1.7 Fibonacci数列{xn}的定义是x11,x21,
,xnxn1xn2(n3,4,)用循环语句编程给出该数列的前20项(要求将结果用向量mx在x0的泰勒展式(最高次幂为4).
1000.0的形式给出)。 程序:
x=[1,1];
for n=3:20
x(n)=x(n-1)+x(n-2);
end
x
结果:
Columns 1 through 10
1 1
8 13 21 34 55
Columns 11 through 20
89 144
987 1597 2584 4181 6765
2
233
3
377
5
610
211A0201.8 对矩阵,求该矩阵的逆矩阵,特征值,特征向量,行列m411000式,计算A6,并求矩阵P,D(D是对角矩阵),使得APDP1。
程序与结果:
a=[-2,1,1;0,2,0;-4,1,1001/1000];
inv(a)
eig(a)
2.00
[p,d]=eig(a)
p =
0.3355 - 0.2957i 0.3355 + 0.2957i 0.2425
0 0 0.9701
0.8944 0.8944 0.0000
注:p的列向量为特征向量
d =
-0.4995 + 1.3223i 0 0
0 -0.4995 - 1.3223i 0
0 0 2.0000
a^6
11.9680 13.0080 -4.9910
0 64.0000 0 19.9640 -4.9910 -3.0100 1.9 作出如下函数的图形(注:先用M文件定义函数,再用fplot进行函数作图):
函数文件f.m:
function y=f(x)
if 0<=x&x<=1/2
y=2.0*x;
else 1/2 y=2.0*(1-x); end 程序:fplot(@f,[0,1]) 1.10 在同一坐标系下作出下面两条空间曲线(要求两条曲线用不同的颜色表示) xcostx2cost(1)ysint (2)y2sint ztzt程序: t=-10:0.01:10; 10x1=cos(t); y1=sin(t); z1=t; 50-5-1010.50-0.5-1-1-0.50.501plot3(x1,y1,z1,\'k\');hold on x2=cos(2*t); y2=sin(2*t); z2=t; plot3(x2,y2,z2,\'r\');hold off 4221341.11 已知A305,B203,在MATLAB命令窗口中建立15m3211A、B矩阵并对其进行以下操作: (1) 计算矩阵A的行列式的值det(A) (2) 分别计算下列各式:2AB,A*B,A.*B,AB1,A1B,A2,AT 解:(1)程序: a=[4,-2,2;-3,0,5;1,5*1001,3]; b=[1,3,4;-2,0,3;2,-1,1];det(a) -130158 (2) 2*a-b 7 -7 0 -4 0 7 0 10011 5 a*b 12 10 12 7 -14 -7 -10003 0 15022 a.*b 4 -6 8 6 0 15 2 -5005 3 a*inv(b) 1.0e+003 * -0.0000 0 0.0020 0.0000 0.0016 0.0001 1.1443 -1.0006 -1.5722 inv(a)*b 0.3463 0.5767 0.5383 0.0004 -0.0005 -0.0005 -0.1922 0.3460 0.9230 a^2 24 10002 4 -7 25031 9 -15008 15013 25036 A\' 4 -3 1 -2 0 5005 2 5 3 1.12 已知f(x)1e2(x)222分别在下列条件下画出f(x)的图形: (1)m/600,分别为0,1,1(在同一坐标系上作图); (2)0,分别为1,2,4,m/100(在同一坐标系上作图). (1)程序: x=-5:0.1:5; h=inline(\'1/sqrt(2*pi)/s*exp(-(x-mu).^2/(2*s^2))\'); y1=h(0,1001/600,x);y2=h(-1,1001/600,x);y3=h(1,1001/600,x); plot(x,y1,\'r+\',x,y2,\'k-\',x,y3,\'b*\') (2)程序: z1=h(0,1,x);z2=h(0,2,x);z3=h(0,4,x); z4=h(0,1001/100,x); plot(x,z1,\'r+\',x,z2,\'k-\',x,z3,\'b*\',x,z4, \'y:\') 1.13 作出zmx2y4的函数图形。 程序:x=-5:0.1:5;y=-10:0.1:10; [X Y]=meshgrid(x,y);Z=1001*X.^2+Y.^4; mesh(X,Y,Z); 1.14对于方程x5mx0.10,先画出左边的函数在合适的区间上的图形,借助于200软件中的方程求根的命令求出所有的实根,找出函数的单调区间,结合高等数学的知识说明函数为什么在这些区间上是单调的,以及该方程确实只有你求出的这些实根。最后写出你做此题的体会。 解:作图程序:(注:x范围的选择是经过试探而得到的) x=-1.7:0.02:1.7;y=x.^5-1001/200*x-0.1; plot(x,y);grid on; 由图形观察,在x=-1.5,x=0,x=1.5附近各有一个实根 求根程序:solve(\'x^5-1001/200*x-0.1\') 结果: 三个实根的近似值分别为: -1.490685,-0.019980,1.500676 由图形可以看出,函数在区间(,1)单调上升,在区间(1,1)单调下降,在区间(1,)单调上升。 diff(\'x^5-1001/200*x-0.1\',x) 结果为5*x^4-1001/200 solve(\'5*x^4-1001/200.\')得到两个实根:-1.0002499与1.0002499 可以验证导函数在(,1.0002499)内为正,函数单调上升 导函数在(1.0002499,1.0002499)内为负,函数单调下降 导函数在(1.0002499,)内为正,函数单调上升 根据函数的单调性,最多有3个实根。 1.15 求ex3mx20的所有根。(先画图后求解)(要求贴图) 作图命令:(注:x范围的选择是经过试探而得到的) x=-5:0.001:15;y=exp(x)-3*1001*x.^2; plot(x,y);grid on; 可以看出,在(-5,5)内可能有根,在(10,15)内有1个根 将(-5,5)内图形加细,最终发现在(-0.03,0.03)内有两个根。 用solve(\'exp(x)-3*1001.0*x^2\',x)可以求出3个根为: 即:-0.018417,0.018084,13.16204 第二次练习 教学要求:要求学生掌握迭代、混沌的判断方法,以及利用迭代思想解决实际问题。 mx(x)/2n1nxn2.1 设,数列{xn}是否收敛?若收敛,其值为多少?精确到8位有x31效数字。 解:程序代码如下(m=1000): >> f=inline(\'(x+1000/x)/2\'); x0=3; for i=1:20; x0=f(x0); fprintf(\'%g,%gn\',i,x0); end 运行结果: 1,168.167 11,31.6228 2,87.0566 12,31.6228 3,49.2717 13,31.6228 4,34.7837 14,31.6228 5,31.7664 15,31.6228 6,31.6231 16,31.6228 7,31.6228 17,31.6228 8,31.6228 18,31.6228 9,31.6228 19,31.6228 10,31.6228 20,31.6228 由运行结果可以看出,,数列{xn}收敛,其值为31.6228。 x1xm2,f2(x)2.2 求出分式线性函数f1(x)的不动点,再编程判断它们的迭代xmxm序列是否收敛。 解:取m=1000. (1)程序如下: f=inline(\'(x-1)/(x+1000)\'); x0=2; for i=1:20; x0=f(x0); fprintf(\'%g,%gn\',i,x0); end 运行结果: 1,0.000998004 11,-0.001001 2,-0.000999001 12,-0.001001 3,-0.001001 13,-0.001001 4,-0.001001 14,-0.001001 5,-0.001001 15,-0.001001 6,-0.001001 16,-0.001001 7,-0.001001 17,-0.001001 8,-0.001001 18,-0.001001 9,-0.001001 19,-0.001001 10,-0.001001 20,-0.001001 由运行结果可以看出,,分式线性函数收敛,其值为-0.001001。易见函数的不动点为-0.001001(吸引点)。 (2)程序如下: f=inline(\'(x+1000000)/(x+1000)\'); x0=2; for i=1:20; x0=f(x0); fprintf(\'%g,%gn\',i,x0); end 运行结果: 1,998.006 11,618.332 2,500.999 12,618.302 3,666.557 13,618.314 4,600.439 14,618.309 5,625.204 15,618.311 6,615.692 16,618.31 7,619.311 17,618.311 8,617.929 18,618.31 9,618.456 19,618.31 10,618.255 20,618.31 由运行结果可以看出,,分式线性函数收敛,其值为618.31。易见函数的不动点为618.31(吸引点)。 2.3 下面函数的迭代是否会产生混沌?(56页练习7(1)) 解:程序如下: f=inline(\'1-2*abs(x-1/2)\'); x=[]; y=[]; x(1)=rand(); y(1)=0;x(2)=x(1);y(2)=f(x(1)); for i=1:100; x(1+2*i)=y(2*i); x(2+2*i)=x(1+2*i); y(2+2*i)=f(x(2+2*i)); end plot(x,y,\'r\'); hold on; syms x; ezplot(x,[0,1/2]); ezplot(f(x),[0,1]); axis([0,1/2,0,1]); >> hold off 运行结果: 2.4 函数f(x)x(1x)(0x1)称为Logistic映射,试从“蜘蛛网”图观察它取初值为x00.5产生的迭代序列的收敛性,将观察记录填人下表,若出现循环,请指出它的周期.(56页练习8) 3.3 3.5 3.56 3.568 序列收敛情况 解:当=3.3时,程序代码如下: f=inline(\'3.3*x*(1-x)\'); x=[]; T=2 T=4 T=8 T=9 混沌 混沌 3.6 3.84 y=[]; x(1)=0.5; y(1)=0;x(2)=x(1);y(2)=f(x(1)); for i=1:1000; x(1+2*i)=y(2*i); x(2+2*i)=x(1+2*i); y(1+2*i)=x(1+2*i); y(2+2*i)=f(x(2+2*i)); end plot (x,y,\'r\'); hold on; syms x; ezplot(x,[0,1]); ezplot(f(x),[0,1]); axis([0,1,0,1]); hold off运行结果: 当=3.5时,上述程序稍加修改,得: 当=3.56时,得: 当=3.568时,得: 当=3.6时,得: 当=3.84时,得: 2.5 对于Martin迭代,取参数a,b,c为其它的值会得到什么图形?参考下表(取自63页练习13) m -m -m m/1000 m/1000 m/100 -m/10 解:取m=10000;迭代次数N=20000; 在M-文件里面输入代码: function Martin(a,b,c,N) f=@(x,y)(y-sign(x)*sqrt(abs(b*x-c))); g=@(x)(a-x); m=[0;0]; for n=1:N m(:,n+1)=[f(m(1,n),m(2,n)),g(m(1,n))]; end plot(m(1,:),m(2,:),\'kx\'); axis equal m -m m/1000 m/1000 m m/10 17 m m -m 0.5 -m -10 4 在命令窗口中执行Martin(10000,10000,10000,20000),得: 执行Martin(-10000,-10000,10000,20000),得: 执行Martin(-10000,10,-10000,20000),得: 执行Martin(10,10,0.5,20000),得: 执行Martin(10,10000,-10000,20000),得: 执行Martin(100,1000,-10,20000),得: 执行Martin(-1000,17,4,20000),得: 2.6 能否找到分式函数axb(其中a,b,c,d,e是整数),使它产生的迭代序列(迭cx2dxe代的初始值也是整数)收敛到3m(对于3m为整数的学号,请改为求310m)。如果迭代收敛,那么迭代的初值与收敛的速度有什么关系.写出你做此题的体会. 提示:教材54页练习4的一些分析。 若分式线性函数f(x)此 化简得:(2cb)(da)20。 若a,b,c,d为整数,易见b2c,da。 取满足这种条件的不同的a,b,c,d以及迭代初值进行编。 解:取m=10000;根据上述提示,取: axb的迭代收敛到指定的数2,则2为f(x)的不动点,因cxd 运行结果如下: 1,0.00777777 2,9999.4 3,0.000200018 4,10000 5,0.0002 6,10000 7,0.0002 8,10000 9,0.0002 10,10000 11,0.0002 12,10000 13,0.0002 14,10000 15,0.0002 16,10000 17,0.0002 18,10000 19,0.0002 20,10000 21,0.0002 22,10000 23,0.0002 24,10000 25,0.0002 26,10000 27,0.0002 28,10000 29,0.0002 30,10000 31,0.0002 32,10000 33,0.0002 34,10000 35,0.0002 36,10000 37,0.0002 38,10000 39,0.0002 40,10000 41,0.0002 42,10000 43,0.0002 44,10000 45,0.0002 46,10000 47,0.0002 48,10000 49,0.0002 50,10000 51,0.0002 52,10000 53,0.0002 54,10000 55,0.0002 56,10000 57,0.0002 58,10000 59,0.0002 60,10000 61,0.0002 62,10000 63,0.0002 64,10000 65,0.0002 66,10000 67,0.0002 68,10000 69,0.0002 70,10000 71,0.0002 72,10000 73,0.0002 74,10000 75,0.0002 76,10000 77,0.0002 78,10000 79,0.0002 80,10000 81,0.0002 82,10000 83,0.0002 84,10000 85,0.0002 86,10000 87,0.0002 88,10000 89,0.0002 90,10000 91,0.0002 92,10000 93,0.0002 94,10000 95,0.0002 96,10000 97,0.0002 98,10000 99,0.0002 100,10000 若初值取为1000,运行结果: 1,0.011 2,9998.8 3,0.000200036 4,10000 5,0.0002 6,10000 7,0.0002 8,10000 9,0.0002 10,10000 11,0.0002 12,10000 13,0.0002 14,10000 15,0.0002 16,10000 17,0.0002 18,10000 19,0.0002 20,10000 21,0.0002 22,10000 23,0.0002 24,10000 25,0.0002 26,10000 27,0.0002 28,10000 29,0.0002 30,10000 31,0.0002 32,10000 33,0.0002 34,10000 35,0.0002 36,10000 37,0.0002 38,10000 39,0.0002 40,10000 41,0.0002 42,10000 43,0.0002 44,10000 45,0.0002 46,10000 47,0.0002 48,10000 49,0.0002 50,10000 51,0.0002 52,10000 53,0.0002 54,10000 55,0.0002 56,10000 57,0.0002 58,10000 59,0.0002 60,10000 61,0.0002 62,10000 63,0.0002 64,10000 65,0.0002 66,10000 67,0.0002 68,10000 69,0.0002 70,10000 71,0.0002 72,10000 73,0.0002 74,10000 75,0.0002 76,10000 77,0.0002 78,10000 79,0.0002 80,10000 81,0.0002 82,10000 83,0.0002 84,10000 85,0.0002 86,10000 87,0.0002 88,10000 89,0.0002 90,10000 91,0.0002 92,10000 93,0.0002 94,10000 95,0.0002 96,10000 97,0.0002 98,10000 99,0.0002 100,10000 若初值取为-1,运行结果: 1,4999.5 2,0.0006001 3,10000 4,0.0002 5,10000 6,0.0002 7,10000 8,0.0002 9,10000 10,0.0002 11,10000 12,0.0002 13,10000 14,0.0002 15,10000 16,0.0002 17,10000 18,0.0002 19,10000 20,0.0002 21,10000 22,0.0002 23,10000 24,0.0002 25,10000 26,0.0002 27,10000 28,0.0002 29,10000 30,0.0002 31,10000 32,0.0002 33,10000 34,0.0002 35,10000 36,0.0002 37,10000 38,0.0002 39,10000 40,0.0002 41,10000 42,0.0002 43,10000 44,0.0002 45,10000 46,0.0002 47,10000 48,0.0002 49,10000 50,0.0002 51,10000 52,0.0002 53,10000 54,0.0002 55,10000 56,0.0002 57,10000 58,0.0002 59,10000 60,0.0002 61,10000 62,0.0002 63,10000 64,0.0002 65,10000 66,0.0002 67,10000 68,0.0002 69,10000 70,0.0002 71,10000 72,0.0002 73,10000 74,0.0002 75,10000 76,0.0002 77,10000 78,0.0002 79,10000 80,0.0002 81,10000 82,0.0002 83,10000 84,0.0002 85,10000 86,0.0002 87,10000 88,0.0002 89,10000 90,0.0002 91,10000 92,0.0002 93,10000 94,0.0002 95,10000 96,0.0002 97,10000 98,0.0002 99,10000 100,0.0002 第三次练习 教学要求:理解线性映射的思想,会用线性映射和特征值的思想方法解决诸如天气等实际问题。 3.1 对A程序: A=sym(\'[4,2;1,3]\'); [P,D]=eig(A) Q=inv(P) syms n; 42(0)(0)TT(x,x)(1,2),,求出{xn}的通项. 1213xn=P*(D.^n)*Q*[1;2] 结果: P = [ 2, -1] [ 1, 1] D = [ 5, 0] [ 0, 2] Q = [ 1/3, 1/3] [ -1/3, 2/3] xn = 2*5^n-2^n 5^n+2^n 0.40.21(0)(0)TT(x,x)(1,2)3.2 BA对于练习1中的,,求出{xn}的通项. B12100.10.3程序: A=sym(\'[2/5,1/5;1/10,3/10]\'); %没有sym下面的矩阵就会显示为小数 [P,D]=eig(A) Q=inv(P) xn=P*(D.^n)*Q*[1;2] 结果: P = [ 2, -1] [ 1, 1] D = [ 1/2, 0] [ 0, 1/5] Q = [ 1/3, 1/3] [ -1/3, 2/3] xn = 2*(1/2)^n-(1/5)^n (1/2)^n+(1/5)^n (n)x23.3 对随机给出的(x,x),观察数列{(n)}.该数列有极限吗? x1(0)1(0)T2>> end end (n)x2结论:在迭代18次后,发现数列{(n)}存在极限为0.5 x13.4 对120页中的例子,继续计算xn,yn(n1,2,).观察{xn},{yn}及m(xn)的极限是否存在. (120页练习9) >> A=[2.1,3.4,-1.2,2.3;0.8,-0.3,4.1,2.8;2.3,7.9,-1.5,1.4;3.5,7.2,1.7,-9.0]; x0=[1;2;3;4]; x=A*x0; for i=1:1:100 a=max(x); b=min(x); m=a*(abs(a)>abs(b))+b*(abs(a)<=abs(b)); y=x/m; x=A*y; end x %也可以用fprintf(‘%gn’,x1),不能把x1,y一起输出 y m 程序输出: x1 = 0.9819 3.2889 -1.2890 -11.2213 y = -0.0875 -0.2931 0.1149 1.0000 m = -11.2213 结论:{xn},{yn}及m(xn)的极限都存在. 3.5 求出A的所有特征值与特征向量,并与上一题的结论作对比. (121页练习10) >> A=[2.1,3.4,-1.2,2.3;0.8,-0.3,4.1,2.8;2.3,7.9,-1.5,1.4;3.5,7.2,1.7,-9.0]; [P,D]=eig(A) P = -0.3779 -0.8848 -0.0832 -0.3908 -0.5367 0.3575 -0.2786 0.4777 -0.6473 0.2988 0.1092 -0.7442 -0.3874 -0.0015 0.9505 0.2555 D = 7.2300 0 0 0 0 1.1352 0 0 0 0 -11.2213 0 0 0 0 -5.8439 结论:A的绝对值最大特征值等于上面的m(xn)的极限相等,为什么呢? 还有,P的第三列也就是-11.2213对应的特征向量和上题求解到的y也有系数关系,两者都是-11.2213的特征向量。 3.6 设p(0)(0.5,0.25,0.25)T,对问题2求出若干天之后的天气状态,并找出其特点(取4位有效数字). (122页练习12) >> A2=[3/4,1/2,1/4;1/8,1/4,1/2;1/8,1/4,1/4]; P=[0.5;0.25;0.25]; for i=1:1:20 P(:,i+1)=A2*P(:,i); end P P = Columns 1 through 14 0.5000 0.5625 0.5938 0.6035 0.6069 0.6081 0.6085 0.6086 0.6087 0.6087 0.6087 0.6087 0.6087 0.6087 0.2500 0.2500 0.2266 0.2207 0.2185 0.2178 0.2175 0.2174 0.2174 0.2174 0.2174 0.2174 0.2174 0.2174 0.2500 0.1875 0.1797 0.1758 0.1746 0.1741 0.1740 0.1739 0.1739 0.1739 0.1739 0.1739 0.1739 0.1739 Columns 15 through 21 0.6087 0.6087 0.6087 0.6087 0.6087 0.6087 0.6087 0.2174 0.2174 0.2174 0.2174 0.2174 0.2174 0.2174 0.1739 0.1739 0.1739 0.1739 0.1739 0.1739 0.1739 结论:9天后,天气状态趋于稳定P*=(0.6087,0.2174,0.1739)T 3.7 对于问题2,求出矩阵A2的特征值与特征向量,并将特征向量与上一题中的结论作对比. (122页练习14) >> [P,D]=eig(A2) P = -0.9094 -0.8069 0.3437 -0.3248 0.5116 -0.8133 -0.2598 0.2953 0.4695 D = 1.0000 0 0 0 0.3415 0 0 0 -0.0915 分析:事实上,q=k(-0.9094, -0.3248, -0.2598)T均为特征向量,而上题中P*的3个分量之和为1,可令k(-0.9094, -0.3248, -0.2598)T=1,得k=-0.6696.有q=(0.6087, 0.2174, 0.1739),与P*一致。 3.8 对问题1,设p1,p2为A1的两个线性无关的特征向量,若 11p(0)(,)T,具体求出上述的u,v,将p(0)表示成p1,p2的线性组合,求p(k)的具体22表达式,并求k时p(k)的极限,与已知结论作比较. (123页练习16) >> A=[3/4,7/18;1/4,11/18]; [P,D]=eig(A); syms k pk; a=solve(‘u*P(1,1)+v*P(1,2)-1/2’,’u*P(2,1)+v*P(2,2)-1/2’,’u’,’v’); pk=a.u*D(1,1).^k*P(:,1)+a.v*D(2,2).^k*P(:,2) pk = -5/46*(13/36)^k+14/23 5/46*(13/36)^k+9/23 或者: p0=[1/2;1/2]; [P,D]=eig(sym(A)); B=inv(sym(P))*p0 B = 5/46 9/23 syms k pk=B(1,1)*D(1,1).^k*P(:,1)+B(2,1)*D(2,2).^k*P(:,2) pk = -5/46*(13/36)^k+14/23 5/46*(13/36)^k+9/23 >> vpa(limit(pk,k,100),10) ans = 结论:和用练习12中用迭代的方法求得的结果是一样的。 第四次练习 教学要求:会利用软件求勾股数,并且能够分析勾股数之间的关系。会解简单的近似计算问题。 4.1 求满足cb2,c1000的所有勾股数,能否类似于(11.8),把它们用一个公式表示出来? 程序:for b=1:998 a=sqrt((b+2)^2-b^2); if(a==floor(a)) fprintf(\'a=%i,b=%i,c=%in\',a,b,b+2) end end 运行结果: a=4,b=3,c=5 a=6,b=8,c=10 a=8,b=15,c=17 a=10,b=24,c=26 a=12,b=35,c=37 a=14,b=48,c=50 a=16,b=63,c=65 a=18,b=80,c=82 a=20,b=99,c=101 a=22,b=120,c=122 a=24,b=143,c=145 a=26,b=168,c=170 a=28,b=195,c=197 a=30,b=224,c=226 a=32,b=255,c=257 a=34,b=288,c=290 a=36,b=323,c=325 a=38,b=360,c=362 a=40,b=399,c=401 a=42,b=440,c=442 a=44,b=483,c=485 a=46,b=528,c=530 a=48,b=575,c=577 a=50,b=624,c=626 a=52,b=675,c=677 a=54,b=728,c=730 a=56,b=783,c=785 a=58,b=840,c=842 a=60,b=899,c=901 a=62,b=960,c=962 勾股数cb2,c1000的解是: 以下是推导过程: 由a2b2(b2)2,有a24b4 显然4(4b4),4a2,从而a是2的倍数.设a2(u1),代入上式得到: 因为cb2,从而cu22u2. 4.2 将上一题中cb2改为cb4,5,6,7,分别找出所有的勾股数.将它们与cb1,2时的结果进行比较,然后用公式表达其结果。 (1)cb4时通项:{a,b,c}{4(u1),2(u22u),2(u22u2)} a=8,b=6,c=10 a=12,b=16,c=20 a=16,b=30,c=34 a=20,b=48,c=52 a=24,b=70,c=74 a=28,b=96,c=100 a=32,b=126,c=130 a=36,b=160,c=164 a=40,b=198,c=202 a=44,b=240,c=244 a=48,b=286,c=290 a=52,b=336,c=340 a=56,b=390,c=394 a=60,b=448,c=452 a=64,b=510,c=514 a=68,b=576,c=580 a=72,b=646,c=650 a=76,b=720,c=724 a=80,b=798,c=802 a=84,b=880,c=884 a=88,b=966,c=970 (2)cb5时通项:a=15,b=20,c=25 a=25,b=60,c=65 a=35,b=120,c=125 a=45,b=200,c=205 a=55,b=300,c=305 {a,b,c}{5(2u1),5(2u22u),5(2u22u1)} a=65,b=420,c=425 a=75,b=560,c=565 a=85,b=720,c=725 a=95,b=900,c=905 (3)cb6时通项{a,b,c}{6(u1),3(u22u),3(u22u2)} a=12,b=9,c=15 a=18,b=24,c=30 a=24,b=45,c=51 a=30,b=72,c=78 a=36,b=105,c=111 a=42,b=144,c=150 a=48,b=189,c=195 a=54,b=240,c=246 a=60,b=297,c=303 a=66,b=360,c=366 a=72,b=429,c=435 a=78,b=504,c=510 a=84,b=585,c=591 a=90,b=672,c=678 a=96,b=765,c=771 a=102,b=864,c=870 a=108,b=969,c=975 (4)cb7时通项{a,b,c}{7(2u1),7(2u22u),7(2u22u1)} a=21,b=28,c=35 a=35,b=84,c=91 a=49,b=168,c=175 a=63,b=280,c=287 a=77,b=420,c=427 a=91,b=588,c=595 a=105,b=784,c=791 综上:当c-b=k为奇数时,通项{a,b,c}{k(2u1),k(2u22u),k(2u22u1)} 当c-b=k为偶数时,通项{a,b,c}{k(u1),k(u22u)/2,k(u22u2)/2} 4.3 对c1000,cbk(k200),对哪些k存在本原勾股数?(140页练习12) 程序:for k=1:200 for b=1:999 a=sqrt((b+k)^2-b^2); if((a==floor(a))&gcd(gcd(a,b),(b+k))==1) fprintf(\'%i,\',k); break; end end end 运行结果:1,2,8,9,18,25,32,49,50,72,81,98,121,128,162,169,200, 4.4 设方程(11.15)的解构成数列{pn},{qn},观察数列{pn},{qn}, {pnqn},{pn2qn},{pnqn}.你能得到哪些等式?试根据这些等式推导出关于pn,qn的递推关系式. (142页练习20) 解:1000以内解构成的数列 {pn},{qn}, {pnqn}, {pn2qn}, {pnqn}如下: 6 pn 2 7 26 97 362 1351 qn 1 4 15 56 209 780 pnqn 3 11 41 153 571 2131 pn2qn 4 15 56 209 780 2911 pnqn 1 3 11 41 153 571 我们发现这些解的关系似乎是: pn1qn1=pnqn qn=pn12qn1 n 1 2 3 4 5 因为qn=pn12qn1,所以qnpn1qn1qnpn12qn1。 有以下结论: pn2pn13qn1 (4.1) qp2qn1n1n可以看成一个线性映射,令 23Xn(xn,yn)T,A12 (4.1)可写成:XnAXn1 4.5 选取100m对随机的a,b,根据(a,b)1的概率求出的近似值。(取自130页练习7) 提示:(1)最大公约数的命令:gcd(a,b) (2)randint(1,1,[u,v])产生一个在[u,v]区间上的随机整数 程序: m=10000;s=0; for i=1:m a=randint(1,2,[1,10^9]); if gcd(a(1),a(2))==1; s=s+1; end end pi=sqrt(6*m/s) 运行结果: pi = 3.1510 4.6 用求定积分的Monte Carlo法近似计算。(102页练习16) 提示:Monte Carlo法近似计算的一个例子。 1对于第一象限的正方形0x1,0y1,内画出四分之一个圆 0.80.60.40.20.20.40.60.81 向该正方形区域内随即投点,则点落在扇形区域内的概率为投n次点,落在扇形内的次数为nc,则程序如下 n=100000;nc=0; for i=1:n x=rand;y=rand; if(x^2+y^2<=1) nc=nc+1; end end pi=4*nc/n 解:程序: a=0;b=1;m=1000; H=1;s=0; for i=1:m xi=rand(); yi=H*rand(); if yi s=s+1; end end pi=4*H*(b-a)*s/m . 4nc4nc. ,因此n4n运行结果: pi = 3.1480 syms x; syms k; f(x,k)=x^3+k*x; x=-3:0.01:3;?y1=x.^3-0.6*x;?y2=x.^3-0.3*x;?y3=x.^3;? y4=x.^3+0.3*x;?y5=x.^3+3*x;? plot(x,y1,\'y\',x,y2,\'m\',x,y3,x,y4,\'r\',x,y5,\'g\')?grid?on综合题 一、方程求根探究 设方程4x44x20 1.用matlab命令求该方程的所有根; 3x3x 2.用迭代法求它的所有根,设迭代函数为f(x)2 4x21)验证取该迭代函数的正确性; 2)分别取初值为-1.1,-1,-0.9,….,0.9,1,1.1,观察迭代结果,是否得到了原方程的根; 3)总结出使得迭代序列收敛到每个根时,初值的范围,比如要使迭代序列收敛到0(方程的一个根)初值应该在什么集合中选取,找出每个根的这样的初值集合。寻找的方法,可以是理论分析方法或数值实验方法。 解答: 1. 用solve命令即可求出所有解; 2. 1)提示:验证原方程与f(x)x同解,以及验证迭代函数在不动点附近的导数绝对值是否小于1 2)代码省略,结果:初值取-1.1,-1,-0.9,-0.8,0.7时收敛到-1,初值取-0.7,0.8,0.9,1,1.1时收敛到1,初值取-0.6,-0.5,。。。,0.5,0.6时收敛到0; 3)在(,22),(21/7,21/7),(22,)中分别取初值,最后分别收敛到-1,1,0;在(21/7,2/2)内有无穷多个收敛到-1的初值小开区间,也有无穷多个收敛到0的小开区间,它们相互交替着;这种状态反射到(2/2,21/7)内,即:在(2/2,21/7)内有无穷多个收敛到1的初值小开区间,也有无穷多个收敛到0的小开区间,它们也是相互交替着,这些小区间与(21/7,2/2)内小开区间对应。 二、1.三次曲线 (a)对k=0及其邻近的k的正值和负值,把f(x)x3kx的图形画在一个公共屏幕上。k的值是怎样影响到图形的形状的? (b)求f(x),它是一个二次函数。求该二次函数的判别式,对什么样的k值,该判别式为正?为零?为负?对什么k值f有两个零点?一个或没有零点?现在请说明k的值对f 图形的形状有什么影响。 (c)对其他的k值做实验。当k会发生什么情形?当k呢? 解答: (a)先用m文件定义函数f(x,k)=x^3+k*x 由fplot(\'[f(x,-0.6),f(x,-0.3),f(x,0),f(x,0.3),f(x,3)]\',[-3,3]) 得下图 403020100-10-20-30-40-3-2-10123可见k值不影响凹凸性,但单调性、单调区间以及极值随k值发生改变;k在0附近,小于0时,函数在某[-a,a]区间上单调递减,该区间长度随着k值增大而减小,k大于等于0时,函数单调增加。 (b) f(x)3x2k;判别式12k,k为负、零、正时判别式分别为正、零、负;故k<0时,f(x)有两个零点,k=0时f(x)有一个零点,k>0时f(x)没有零点。以上说明原函数f(x)的驻点个数随着k值符号而变化,当k由负变正时,驻点由两个变成一个再到没有驻点,相应的单调区间由三个变成一个,单增单减单增,变为单增。 (c) k值越小单减区间长度越大,当k时,f(x)单减区间变为无穷大对称区间,图形近乎垂直直线;当k时,单增区间变为无穷大对称区间,图形近乎垂直直线。 2.四次曲线 (a)对k=-4及其邻近的k值,把f(x)x4kx36x2,1x4的图形画在一个公共屏幕上。k的值是怎样影响到图形的形状的? (b)求f(x),它是一个二次函数。求该二次函数的判别式,对什么样的k值,该判别式为正?为零?为负?对什么k值f有两个零点?一个或没有零点?现在请说明k的值对f 图形的形状有什么影响。 解答: (a)先用m文件定义函数f(x,k)=x^4+k*x^3+6*x^2 fplot(\'[f(x,-4.2),f(x,-5),f(x,-4.5),f(x,-4),f(x,-3.5),f(x,-2.5)]\',[-1,4]) 得图 由图可以看出,在x<1时,图形受k值影响不大,x>1时k值对图形的影响比较显着,通过改变k值画图发现:在-4附近,k小于-4时,曲线在某[a,b](a>0)区间内
更多推荐
函数,迭代,区间,收敛,结果,单调,图形,矩阵
发布评论