2023年12月2日发(作者:湖南对口2020数学试卷)

2020-2021学年度第一学期期中学情分析样题

八年级数学

(考试时间100分钟,试卷总分100分)

一、选择题(每小题2分,共16分)

1.下列图案中,不是轴对称图形的是

..

A. B. C. D.

2.下列说法正确的是

A.全等三角形是指形状相同的两个三角形

B.全等三角形的周长和面积分别相等

C.全等三角形是指面积相等的两个三角形

D.所有的等边三角形都是全等三角形

3.下列各组线段能构成直角三角形的一组是

A.1,2,3 B.2,3,4

C.3,4,5 D.4,5,6

4.如图,已知点A、D、C、F在同一条直线上,AB=DE,∠A=∠EDF,再添加一个条件,可使△ABC

△DEF,下列条件不符合的是

...

A

. ∠B=∠E B. BC∥EF

C.

5.如图,用直尺和圆规作一个角的平分线,该作法的依据是

A.SSS

B.SAS

C.ASA

D.AAS

AD=CF D. AD=DC

6.在如图所示的正方形网格中,△ABC的顶点A、B、C都是网格线的交点,则△ABC的外角∠ACD的度数等于

A.130° B.135° C.140° D.145°

B E

B

C

D

F

A

A

D C

(第6题)

(第5题)

(第4题)

7.如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为

A.a+c B.b+c C.a-b+c D.a+b-c

8.如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于G,交BE于H.下列结论:①S△ABE=S△BCE;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.其中所有正确结论的序号是

A.①②③④ B.①②③ C. ②④ D.①③

C

A

E

B

F

A

G

H

E

F

D

B

D

C

(第7题)

(第8题)

二、填空题(每小题2分,共20分)

9.等腰三角形的底角是顶角的2倍,则顶角的度数是 ▲ °.

10.等边三角形的两条中线相交所形成的锐角等于 ▲ °.

11. 如图,△ABC≌△DEC, CA和CD, CB和CE是对应边,∠ACD=28°, 则∠BCE= ▲ °.

12.如图,在△ABC中,AB=AC,AD是BC边上的高,点E、F是AD的三等分点,若AD=6cm,CD=3cm,则图中阴影部分的面积是 ▲ cm2;

13.如图,在△ABC中,AC的垂直平分线分别交BC、AC于点D、E,若AB=10cm,BC=18cm,则△ABD的周长为

A▲ cm.

A

E

(第11题)

B

C

D

F

E

A

E

C

B(第12题)

DCB

D

(第13题)

14.如图,点P为等边三角形ABC的边BC上一点,且∠APD=80°, AD=AP,则∠DPC = ▲ °.

15.在△ABC中,将∠B、∠C按如图所示方式折叠,点B、C均落于边BC上一点G处,线段MN、EF为折痕.若∠A=82°,则∠MGE= ▲ °.

16.如图,将△ABC绕点C逆时针旋转得到△A′B′C,其中点A′与点A是对应点,点B′与点A

B是对应点,点B′ 落在边AC上,连接A′B,若∠ACB=45°,AC=3,BC=2,则A′B= ▲ .

D

B

P

(第14题)

C

B

G

F

N

(第15题)

C

B

2A

M

E

C

A′

B′

(第16题)

A

17.如图,在△ABC中,∠ACB=90°,∠CAB=30°,以AB长为一边作△ABD,且AD=BD,

∠ADB=90°,取AB中点E,连DE、CE、CD.则∠EDC= ▲ °.

18.如图,在等腰△ABC中,AB=AC=10,高BD=8,AE平分∠BAC,则△ABE的面积为

▲ .

三、解答题(本大题共8小题,共64分)

19.(6分)如图,AD、BC交于点O,AC=BD,BC=AD.

求证:∠C=∠D.

20.(7分) 如图,AD是△ABC的角平分线, DE、DF分别是△ABD和△ACD的高.

求证:AD垂直平分EF.

B

D

(第20题)

E

F

C

A

A

(第19题)

B

C

O

D

E

A

E

(第17题)

B

B

(第18题)

C

D

D

C

A

21.(6分)如图,已知△ABC,请用直尺和圆规以C为一个公共顶点作△CDE,使△CDE与△ABC全等,则全等的依据是 ▲ .(不写作法,保留作图痕迹)

B

C

A

22.(6分)如图,在△ABC中,AB=AC,点E在CA的延长线上,EP⊥BC,垂足为P,

EP交AB于点F.求证:△AEF是等腰三角形.

23.(9分)如图,一架2.5米长的梯子AB斜靠在竖直的墙AC上,这时B到墙底端C的距离

为0.7米.如果梯子的顶端沿墙面下滑0.4米,那么点B将向左滑动多少米?

24.(9分)如图,求证:有两条高相等的三角形是等腰三角形.

B

C

E D

A

B1

B

(第23题)

A

A1

B

C

P

(第22题)

F

E

A

C

25.(10分)已知:如图,AB=AC,AD=AE,BE与CD相交于点P.

(1)求证:PC=PB;

(2)求证:∠CAP=∠BAP;

(3)利用(2)的结论,用直尺和圆规作∠MON的平分线.

C

E

P

A

D

B

(第25题)M

O

N

26.(11分)在Rt△ABC中,∠ACB=90°,BC=a,AC=b,AB=c.将Rt△ABC绕点O依次旋转90°、180°和270°,构成的图形如图所示.该图是我国古代数学家赵爽制作的“勾股圆方图”,也被称作“赵爽弦图”,它是我国最早对勾股定理证明的记载,也成为了2002年在北京召开的国际数学家大会的会标设计的主要依据.

(1)请利用这个图形证明勾股定理;

(2)请利用这个图形说明a2+b2≥2ab,并说明等号成立的条件;

(3)请根据(2)的结论解决下面的问题:长为x,宽为y的长方形,其周长为8,求当x,y取何值时,该长方形的面积最大?最大面积是多少?

C

A

b

c

a

O

B

(第26题)

2020-2021学年度第一学期期中学情分析样题(2)

八年级数学评分标准

一、选择(每题2分,共16分)

题号

答案

1

D

2

B

3

C

4

D

5

A

6

B

7

D

8

B

二、填空题(每题2分,共20分)

9.36 10.60 11.28 12.9 13.28

14.20 15.82 16.13 17.75 18.15.

三、解答题

19.(6分) 证明:在△ABC和△BAD中,

∵AC=BD,BC=AD,AB=BA,

B

A

∴△ABC≌△BAD. ······································································ 4分

(第19题)

C

O

D

∴∠C=∠D. ··············································································· 6分

·20.(7分) 证明:∵AD是△ABC的角平分线,

∴∠BAD=∠CAD, ······································································ 1分

∵ DE、DF分别是△ABD和△ACD的高,

E

F

A

∴∠DEA=∠DFA=90°, ····························································· 2分

∵AD=AD,

B

D

(第20题)

C

∴△AED≌△AFD. ······································································ 4分

∴DE=DF,AE=AF, ································································· 5分

∴A、D在EF的垂直平分线上, ···················································· 6分

E

∴AD垂直平分EF. ····································································· 7分

A

21.(6分)可分别利用平移、翻折、旋转作图. ······································ 4分

理由. ··························································································· 6分

F

22.(6分) 证明:∵AB=AC,

∴∠B=∠C ···················································································· 1分

∵EP⊥BC,

B

C

P

G

(第22题)

∴∠B+∠BFP=∠C+∠E=90°, ···················································· 3分

∵∠BFP=∠AFE

∴∠AFE=∠E ················································································ 5分

∴AE=AF,

即△AEF是等腰三角形. ································································· 6分

证法二:过A作AG⊥BC,································································ 1分

∵AB=AC,∴∠BAG=∠CAG, ······················································· 2分

∵EP⊥BC,∴∠AGC=∠EPC=90°,

∴AG∥EP, ··················································································· 3分

∴∠BAG=∠AFE,∠CAG=∠E, ····················································· 4分

∴∠AFE=∠E ················································································ 5分

∴AE=AF,

即△AEF是等腰三角形. ································································· 6分

23.(9分)

A

A1

·解:在△ABC中,∠C=90°,∴AC2+BC2=AB2, ······························ 2分

即AC2+0.72=2.52,∴AC=2.4. ························································ 4分

在△A1B1C中,∠C=90°,∴A1C2+B1C2=A1B12, ······························ 6分

B1

B

即(2.4–0.4)+B1C=2.5,∴B1C=1.5. ············································ 8分

(第23题)

·∴B1B=1.5–0.7=0.8,即点B将向左移动0.8米.

································· 9分

24.(9分)

已知: 在△ABC中,BD⊥AC于点D,CE⊥AB于点E,且BD=CE, ····· 2分

求证:△ABC是等腰三角形.(或AB=AC) ········································· 3分

A

证明:∵BD⊥AC于点D,CE⊥AB于点E,

∴∠BDC=∠CEB=90°, ································································ 4分

在△BDC和△CEB中,

∵BD=CE,BC=CB,

C

B

∴△BDC≌△CEB(HL). ································································ 7分

E D

2 22C

∴∠DCB=∠EBC. ········································································· 8分

∴AB=AC,

即△ABC是等腰三角形. ·································································· 9分

25.(10分)证明:(1)

∵AB=AC,AD=AE,∠BAE=∠CAD.

C

M

∴△BAE≌△CAD(SAS), ································································ 2分

∴∠C=∠B,

∵AB=AC,AD=AE,

∴CE=BD,

∵∠CPE=∠BPD,

∴△CPE≌△BPD(AAS), ······························································· 4分

∴PC=PB. ··················································································· 5分

(2)∵AB=AC,∠C=∠B, PC=PB,

∵△ACP≌△ABP(SAS), ································································ 7分

∴∠CAP=∠BAP. ········································································· 8分

(3)如图. ················································································· 10分

26.(11分)解:(1)因为边长为c的正方形面积为c2,···························· 1分

它也可以看成是由4个直角三角形与1个边长为(a– b)的小正方形组成的,

1它的面积为4×ab+(a– b)2=a2+b2, ·············································· 3分

2所以c2=a2+b2. ········································································· 4分

(2)∵(a– b)2≥0, ······································································ 5分

∴a2+b2–2ab≥0,∴a2+b2≥2ab, ················································· 6分

当且仅当a=b时,等号成立. ························································ 7分

(3)依题意得2(x+y)=8,∴x+y=4,长方形的面积为xy,

由(2)的结论知2xy≤x2+y2=(x+y)2–2xy, ···································· 9分

∴4xy≤(x+y)2,∴xy≤4, ··························································· 10分

当且仅当x=y=2时,长方形的面积最大,最大面积是4. ··················· 11分

A

D

E

P

B

O

N


更多推荐

面积,三角形,下列,图形,结论,旋转