2023年12月2日发(作者:湖南对口2020数学试卷)
2020-2021学年度第一学期期中学情分析样题
八年级数学
(考试时间100分钟,试卷总分100分)
一、选择题(每小题2分,共16分)
1.下列图案中,不是轴对称图形的是
..
A. B. C. D.
2.下列说法正确的是
A.全等三角形是指形状相同的两个三角形
B.全等三角形的周长和面积分别相等
C.全等三角形是指面积相等的两个三角形
D.所有的等边三角形都是全等三角形
3.下列各组线段能构成直角三角形的一组是
A.1,2,3 B.2,3,4
C.3,4,5 D.4,5,6
4.如图,已知点A、D、C、F在同一条直线上,AB=DE,∠A=∠EDF,再添加一个条件,可使△ABC
≌
△DEF,下列条件不符合的是
...
A
. ∠B=∠E B. BC∥EF
C.
5.如图,用直尺和圆规作一个角的平分线,该作法的依据是
A.SSS
B.SAS
C.ASA
D.AAS
AD=CF D. AD=DC
6.在如图所示的正方形网格中,△ABC的顶点A、B、C都是网格线的交点,则△ABC的外角∠ACD的度数等于
A.130° B.135° C.140° D.145°
B E
B
C
D
F
A
A
D C
(第6题)
(第5题)
(第4题)
7.如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为
A.a+c B.b+c C.a-b+c D.a+b-c
8.如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于G,交BE于H.下列结论:①S△ABE=S△BCE;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.其中所有正确结论的序号是
A.①②③④ B.①②③ C. ②④ D.①③
C
A
E
B
F
A
G
H
E
F
D
B
D
C
(第7题)
(第8题)
二、填空题(每小题2分,共20分)
9.等腰三角形的底角是顶角的2倍,则顶角的度数是 ▲ °.
10.等边三角形的两条中线相交所形成的锐角等于 ▲ °.
11. 如图,△ABC≌△DEC, CA和CD, CB和CE是对应边,∠ACD=28°, 则∠BCE= ▲ °.
12.如图,在△ABC中,AB=AC,AD是BC边上的高,点E、F是AD的三等分点,若AD=6cm,CD=3cm,则图中阴影部分的面积是 ▲ cm2;
13.如图,在△ABC中,AC的垂直平分线分别交BC、AC于点D、E,若AB=10cm,BC=18cm,则△ABD的周长为
A▲ cm.
A
E
(第11题)
B
C
D
F
E
A
E
C
B(第12题)
DCB
D
(第13题)
14.如图,点P为等边三角形ABC的边BC上一点,且∠APD=80°, AD=AP,则∠DPC = ▲ °.
15.在△ABC中,将∠B、∠C按如图所示方式折叠,点B、C均落于边BC上一点G处,线段MN、EF为折痕.若∠A=82°,则∠MGE= ▲ °.
16.如图,将△ABC绕点C逆时针旋转得到△A′B′C,其中点A′与点A是对应点,点B′与点A
B是对应点,点B′ 落在边AC上,连接A′B,若∠ACB=45°,AC=3,BC=2,则A′B= ▲ .
D
B
P
(第14题)
C
B
G
F
N
(第15题)
C
B
2A
M
E
C
A′
B′
(第16题)
A
17.如图,在△ABC中,∠ACB=90°,∠CAB=30°,以AB长为一边作△ABD,且AD=BD,
∠ADB=90°,取AB中点E,连DE、CE、CD.则∠EDC= ▲ °.
18.如图,在等腰△ABC中,AB=AC=10,高BD=8,AE平分∠BAC,则△ABE的面积为
▲ .
三、解答题(本大题共8小题,共64分)
19.(6分)如图,AD、BC交于点O,AC=BD,BC=AD.
求证:∠C=∠D.
20.(7分) 如图,AD是△ABC的角平分线, DE、DF分别是△ABD和△ACD的高.
求证:AD垂直平分EF.
B
D
(第20题)
E
F
C
A
A
(第19题)
B
C
O
D
E
A
E
(第17题)
B
B
(第18题)
C
D
D
C
A
21.(6分)如图,已知△ABC,请用直尺和圆规以C为一个公共顶点作△CDE,使△CDE与△ABC全等,则全等的依据是 ▲ .(不写作法,保留作图痕迹)
B
C
A
22.(6分)如图,在△ABC中,AB=AC,点E在CA的延长线上,EP⊥BC,垂足为P,
EP交AB于点F.求证:△AEF是等腰三角形.
23.(9分)如图,一架2.5米长的梯子AB斜靠在竖直的墙AC上,这时B到墙底端C的距离
为0.7米.如果梯子的顶端沿墙面下滑0.4米,那么点B将向左滑动多少米?
24.(9分)如图,求证:有两条高相等的三角形是等腰三角形.
B
C
E D
A
B1
B
(第23题)
A
A1
B
C
P
(第22题)
F
E
A
C
25.(10分)已知:如图,AB=AC,AD=AE,BE与CD相交于点P.
(1)求证:PC=PB;
(2)求证:∠CAP=∠BAP;
(3)利用(2)的结论,用直尺和圆规作∠MON的平分线.
C
E
P
A
D
B
(第25题)M
O
N
26.(11分)在Rt△ABC中,∠ACB=90°,BC=a,AC=b,AB=c.将Rt△ABC绕点O依次旋转90°、180°和270°,构成的图形如图所示.该图是我国古代数学家赵爽制作的“勾股圆方图”,也被称作“赵爽弦图”,它是我国最早对勾股定理证明的记载,也成为了2002年在北京召开的国际数学家大会的会标设计的主要依据.
(1)请利用这个图形证明勾股定理;
(2)请利用这个图形说明a2+b2≥2ab,并说明等号成立的条件;
(3)请根据(2)的结论解决下面的问题:长为x,宽为y的长方形,其周长为8,求当x,y取何值时,该长方形的面积最大?最大面积是多少?
C
A
b
c
a
O
B
(第26题)
2020-2021学年度第一学期期中学情分析样题(2)
八年级数学评分标准
一、选择(每题2分,共16分)
题号
答案
1
D
2
B
3
C
4
D
5
A
6
B
7
D
8
B
二、填空题(每题2分,共20分)
9.36 10.60 11.28 12.9 13.28
14.20 15.82 16.13 17.75 18.15.
三、解答题
19.(6分) 证明:在△ABC和△BAD中,
∵AC=BD,BC=AD,AB=BA,
B
A
∴△ABC≌△BAD. ······································································ 4分
(第19题)
C
O
D
∴∠C=∠D. ··············································································· 6分
·20.(7分) 证明:∵AD是△ABC的角平分线,
∴∠BAD=∠CAD, ······································································ 1分
∵ DE、DF分别是△ABD和△ACD的高,
E
F
A
∴∠DEA=∠DFA=90°, ····························································· 2分
∵AD=AD,
B
D
(第20题)
C
∴△AED≌△AFD. ······································································ 4分
∴DE=DF,AE=AF, ································································· 5分
∴A、D在EF的垂直平分线上, ···················································· 6分
E
∴AD垂直平分EF. ····································································· 7分
A
21.(6分)可分别利用平移、翻折、旋转作图. ······································ 4分
理由. ··························································································· 6分
F
22.(6分) 证明:∵AB=AC,
∴∠B=∠C ···················································································· 1分
∵EP⊥BC,
B
C
P
G
(第22题)
∴∠B+∠BFP=∠C+∠E=90°, ···················································· 3分
∵∠BFP=∠AFE
∴∠AFE=∠E ················································································ 5分
∴AE=AF,
即△AEF是等腰三角形. ································································· 6分
证法二:过A作AG⊥BC,································································ 1分
∵AB=AC,∴∠BAG=∠CAG, ······················································· 2分
∵EP⊥BC,∴∠AGC=∠EPC=90°,
∴AG∥EP, ··················································································· 3分
∴∠BAG=∠AFE,∠CAG=∠E, ····················································· 4分
∴∠AFE=∠E ················································································ 5分
∴AE=AF,
即△AEF是等腰三角形. ································································· 6分
23.(9分)
A
A1
·解:在△ABC中,∠C=90°,∴AC2+BC2=AB2, ······························ 2分
即AC2+0.72=2.52,∴AC=2.4. ························································ 4分
在△A1B1C中,∠C=90°,∴A1C2+B1C2=A1B12, ······························ 6分
B1
B
即(2.4–0.4)+B1C=2.5,∴B1C=1.5. ············································ 8分
(第23题)
·∴B1B=1.5–0.7=0.8,即点B将向左移动0.8米.
································· 9分
24.(9分)
已知: 在△ABC中,BD⊥AC于点D,CE⊥AB于点E,且BD=CE, ····· 2分
求证:△ABC是等腰三角形.(或AB=AC) ········································· 3分
A
证明:∵BD⊥AC于点D,CE⊥AB于点E,
∴∠BDC=∠CEB=90°, ································································ 4分
在△BDC和△CEB中,
∵BD=CE,BC=CB,
C
B
∴△BDC≌△CEB(HL). ································································ 7分
E D
2 22C
∴∠DCB=∠EBC. ········································································· 8分
∴AB=AC,
即△ABC是等腰三角形. ·································································· 9分
25.(10分)证明:(1)
∵AB=AC,AD=AE,∠BAE=∠CAD.
C
M
∴△BAE≌△CAD(SAS), ································································ 2分
∴∠C=∠B,
∵AB=AC,AD=AE,
∴CE=BD,
∵∠CPE=∠BPD,
∴△CPE≌△BPD(AAS), ······························································· 4分
∴PC=PB. ··················································································· 5分
(2)∵AB=AC,∠C=∠B, PC=PB,
∵△ACP≌△ABP(SAS), ································································ 7分
∴∠CAP=∠BAP. ········································································· 8分
(3)如图. ················································································· 10分
26.(11分)解:(1)因为边长为c的正方形面积为c2,···························· 1分
它也可以看成是由4个直角三角形与1个边长为(a– b)的小正方形组成的,
1它的面积为4×ab+(a– b)2=a2+b2, ·············································· 3分
2所以c2=a2+b2. ········································································· 4分
(2)∵(a– b)2≥0, ······································································ 5分
∴a2+b2–2ab≥0,∴a2+b2≥2ab, ················································· 6分
当且仅当a=b时,等号成立. ························································ 7分
(3)依题意得2(x+y)=8,∴x+y=4,长方形的面积为xy,
由(2)的结论知2xy≤x2+y2=(x+y)2–2xy, ···································· 9分
∴4xy≤(x+y)2,∴xy≤4, ··························································· 10分
当且仅当x=y=2时,长方形的面积最大,最大面积是4. ··················· 11分
A
D
E
P
B
O
N
更多推荐
面积,三角形,下列,图形,结论,旋转
发布评论