2024年1月24日发(作者:高中最难数学试卷出题人)

【数学公式】数学勾股定理公式大全

勾股定理公式是a的平方加上b的平方等于c的平方。如果直角三角形两直角边分别为a,b,斜边为C,那么公式就是:a²+b²=c²。

勾股定理是一个基本的几何定理,它是用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。

勾股定理的逆定理:如果三角形三边长a,b,c满足a²+b²=c²,那么这个三角形是直角三角形,其中c为斜边。即直角三角形两直角边长的平方和等于斜边长的平方。

1.能够构成直角三角形的三边长的三个正整数称为勾股数,即中,a,b,c为正整数时,称a,b,c为一组勾股数。

2.记住常见的勾股数可以提高解题速度,如3、4、5;6、8、10;5、12、13;7、24、25等。

3.用含字母的代数式表示n组勾股数:(n为正整数);(n为正整数);(m>n,m,n为正整数)。

勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。主要有以下几种:

(1)拼图的方法

用拼图的方法验证勾股定理的思路是:

①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变;

②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。

(2)青朱出入图

青朱出入图,是东汉末年数学家刘徽根据“割补术”运用数形关系证明勾股定理的几何证明法,特色鲜明、通俗易懂。

刘徽描述此图,“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不动也,合成弦方之幂。开方除之,即弦也。”其大意为,一个任意直角三角形,以勾宽作红色正方形即朱方,以股长作青色正方形即青方。将朱方、青方两个正方形对齐底边排列,再以盈补虚,分割线内不动,线外则“各从其类”,以合成弦的正方形即弦方,弦方开方即为弦长。

(3)欧几里得证法

在欧几里得的《几何原本》一书中给出勾股定理的以下证明。设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。

在这个定理的证明中,我们需要如下四个辅助定理:

如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS)

三角形面积是任一同底同高之平行四边形面积的一半。

任意一个正方形的面积等于其二边长的乘积。

任意一个矩形的面积等于其二边长的乘积(据辅助定理3)。

证明的思路为:从A点划一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,把上方的两个正方形,通过等高同底的三角形,以其面积关系,转换成下方两个同等面积的长方形。

感谢您的阅读,祝您生活愉快。


更多推荐

面积,勾股定理,证明,正方形,方法,等于