2023年12月2日发(作者:2022职教高考数学试卷讲解)
2023年河北省中考数学真题试卷
一、选择题.
1.
代数式7x的意义可以是(
)
A.
7与x的和
C.
7与x的积
B.
7与x的差
D.
7与x的商
2.
淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西70的方向,则淇淇家位于西柏坡的(
)
A.南偏西70方向
C.
北偏西20方向
33y3.
化简x的结果是(
)
x2B.
南偏东20方向
D.
北偏东70方向
A.
xy6 B.
xy5 C.
x2y5 D.
x2y6
4. 1有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上.若从中随机抽取一张,则抽到的花色可能性最大的是(
)
A. B. C. D.
5.
四边形ABCD的边长如图所示,对角线AC的长度随四边形形状的改变而变化.当ABC为等腰三角形时,对角线AC的长为(
)
第 1 页 共 25 页
A. 2 B. 3 C. 4 D. 5
6.
若k为任意整数,则(2k3)24k2的值总能(
)
A.
被2整除 B.
被3整除 C.
被5整除 D.
被7整除
214a7.
若a2,b7,则(
)
2bA. 2 B. 4 C.
7 D.
2
8.
综合实践课上,嘉嘉画出△ABD,利用尺规作图找一点C,使得四边形ABCD为平行四边形.图1~图3是其作图过程.
(1)作BD的垂直平分线交(2)连接AO,在AO的延长线上截取(3)连接DC,BC,则四边形BD于点O.
ABCD即为所求.
OCAO.
在嘉嘉的作法中,可直接判定四边形ABCD为平行四边形的条件是(
)
A.
两组对边分别平行
C.
对角线互相平分
9.
如图,点P1~P8是正确的是( )
B.
两组对边分别相等
D.
一组对边平行且相等
O的八等分点.若PP13P7,四边形P3P4P6P7的周长分别为a,b,则下列
第 2 页 共 25 页
A.
ab
C.
ab
B.
ab
D. a,b大小无法比较
10.
光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于9.461012km.下列正确的是(
)
A.
9.461012109.461011
C.
9.461012是一个12位数
B.
9.4610120.4691012
D.
9.461012是一个13位数
11.
如图,在Rt△ABC中,AB4,点M是斜边BC的中点,以AM为边作正方形AMEF.若S正方形AMEF16,则SABC(
)
A.
43 B.
83 C. 12 D. 16
12.
如图1,一个2×2的平台上已经放了一个棱长为1的正方体,要得到一个几何体,其主视图和左视图如图2,平台上至还需再放这样的正方体(
)
A. 1个
13.
在ABC和
B. 2个 C. 3个 D. 4个
ABC中,BB30,ABAB6,ACAC4.已知第 3 页 共 25 页 Cn,则C(
)
A.
30 B.
n
D.
30或150 C.
n或180n
14.
如图是一种轨道示意图,其中ADC和ABC均为半圆,点M,A,C,N依次在同一直线上,且AMCN.现有两个机器人(看成点)分别从M,N两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为MADCN和NCBAM.若移动时间为x,两个机器人之间距离为y,则y与x关系的图象大致是(
)
B.
C. D.
15.
如图,直线l1∥l2,菱形ABCD和等边EFG在l1,l2之间,点A,F分别在l1,l2上,点B,D,E,G在同一直线上:若50,ADE146,则(
)
第 4 页 共 25 页 A.
42 B.
43 C.
44 D.
45
16.
已知二次函数yx2m2x和yx2m2(m是常数)的图象与x轴都有两个交点,
且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为(
)A. 2 B.
m2 C. 4 D.
2m2
二、填空题
17.
如图,已知点A(3,3),B(3,1),反比例函数y出一个符合条件的k的数值:_________.
k(k0)图像的一支与线段AB有交点,写x
18.
根据下表中的数据,写出a的值为_______.b的值为_______.
x
结果
代数式
2 n
3x1
2x1
x
7
a
b
1
19.
将三个相同的六角形螺母并排摆放在桌面上,其俯视图如图1,正六边形边长为2且各有一个顶点在直线l上,两侧螺母不动,把中间螺母抽出并重新摆放后,其俯视图如图2,其中,中间正六边形的一边与直线l平行,有两边分别经过两侧正六边形的一个顶点.则图2中
(1)______度.
(2)中间正六边形的中心到直线l的距离为______(结果保留根号).
第 5 页 共 25 页
三、解答题
20.
某磁性飞镖游戏的靶盘如图.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投,计分规则如下:
投中位置 A区 B区
1
脱靶
一次计分(分)
3
2
在第一局中,珍珍投中A区4次,B区2次,脱靶4次.
(1)求珍珍第一局的得分.
(2)第二局,珍珍投中A区k次,B区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k的值.
21.
现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图1所示(a1).某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙),如图2和图3,其面积分别为S1,S2.
第 6 页 共 25 页 (1)请用含a的式子分别表示S1,S2.当a2时,求S1S2的值.
(2)比较S1与S2的大小,并说明理由.
22.
某公司为提高服务质量,对其某个部门开展了客户满意度问卷调查,客户满意度以分数呈现,调意度从低到高为1分,2分,3分,4分,5分,共5档.公司规定:若客户所评分数的平均数或中位数低于3.5分,则该部门需要对服务质量进行整改.工作人员从收回的问卷中随机抽取了20份,下图是根据这20份问卷中的客户所评分数绘制的统计图.
(1)求客户所评分数的中位数、平均数,并判断该部门是否需要整改.
(2)监督人员从余下的问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户所评分数的平均数大于3.55分,求监督人员抽取的问卷所评分数为几分?与(1)相比,中位数是否发生变化?
23.
嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.
如图,在平面直角坐标系中,一个单位长度代表1m长.嘉嘉在点A(6,1)处将沙包(看成点)2抛出,并运动路线为抛物线C1:ya(x3)2的一部分,淇淇恰在点B(0,c)处接住,然后跳起将沙包回传,其运动路线为抛物线C2:y12nxxc1的一部分.
88
第 7 页 共 25 页
(1)写出C1的最高点坐标,并求a,c的值.
(2)若嘉嘉在x轴上方1m的高度上,且到点A水平距离不超过1m的范围内可以接到沙包,求符合条件的n的整数值.
24.
装有水的水槽放置在水平台面上,其横截面是以AB为直径的半圆O,AB50cm,如图1和图2所示,MN为水面截线,GH为台面截线,MN∥GH.
计算:在图1中,已知MN48cm,作OCMN于点C.
(1)求OC的长.
操作:将图1中的水面沿GH向右作无滑动的滚动,使水流出一部分,当ANM30时停止滚动,如图2.其中,半圆的中点为Q,GH与半圆的切点为E,连接OE交MN于点D.
探究:在图2中
(2)操作后水面高度下降了多少?
(3)连接OQ并延长交GH于点F,求线段EF与EQ的长度,并比较大小.
25.
在平面直角坐标系中,设计了点的两种移动方式:从点(x,y)移动到点(x2,y1)称为一
第 8 页 共 25 页 次甲方式:从点(x,y)移动到点(x1,y2)称为一次乙方式.
例、点P从原点O出发连续移动2次.若都按甲方式,最终移动到点M(4,2).若都按乙方式,最终移动到点N(2,4).若按1次甲方式和1次乙方式,最终移动到点E(3,3).
(1)设直线l1经过上例中的点M,N,求l1的解析式.并直接写出将l1向上平移9个单位长度得到的直线l2的解析式.
(2)点P从原点O出发连续移动10次,每次移动按甲方式或乙方式,最终移动到点Q(x,y).其中,按甲方式移动了m次.
①用含m的式子分别表示x,y.
①请说明:无论m怎样变化,点Q都在一条确定的直线上.设这条直线为l3,在图中直接画出l3的图象.
(3)在(1)和(2)中的直线l1,l2,l3上分别有一个动点A,B,C,横坐标依次为a,b,c,若A,B,C三点始终在一条直线上,直接写出此时a,b,c之间的关系式.
26.
如图1和图2,平面上,四边形ABCD中,AB8,BC211,CD12,DA6,A90,点M在AD边上,且DM2.将线段MA绕点M顺时针旋转n(0n180)到MA,AMA的平分线MP所在直线交折线AB—BC于点P,设点P在该折线上运动的路径长为x(x0),连接AP.
第 9 页 共 25 页
(1)若点P在AB上,求证:APAP.
(2)如图2.连接BD.
①求CBD的度数,并直接写出当n180时,x的值.
①若点P到BD的距离为2,求tanAMP的值.
(3)当0x8时,请直接写出点A到直线AB的距离.(用含x的式子表示).
第 10 页 共 25 页 2023年河北省中考数学真题试卷答案
一、选择题
1. C
2. D
3. A
4. B
5. B
6. B
22解:(2k3)4k
(2k32k)(2k32k)
3(4k3)
3(4k3)能被3整除
①(2k3)24k2的值总能被3整除
故选:B.
7. A
解:①a2,b7
14214a2①22b7故选:A.
8. C
9. A
连接PP12,P2P3
21424=2
7
第 11 页 共 25 页
①点P1~P8是
O的八等分点,即PP12P2P3P3P4P4P5P5P6P6P7P7P8P8P1①PP
12P2P3P3P4P6P7,P4P6P4P5P5P6P7P8P8P1PP17①P4P6PP17
又①PP13PP17P3P7
13P7的周长为aPP四边形P3P4P4P6P6P7P3P7
3P4P6P7的周长为bP①baP3P4P4P6P6P7P3P7PP13PP17P3P7PP12PP17P2P3P3P7PP13PP17P3P7
PP12P2P3PP13
在PP12P2P3PP13
12P3中有PP①baPP12P2P3PP130
故选A.
10. D
11. B
解:①S正方形AMEF16
①AM164
①Rt△ABC中,点M是斜边BC的中点
①BC2AM8
①AC①SABCBC2AB2824243
11ABAC44383
22故选:B.
第 12 页 共 25 页 12. B
13. C
14. D
15. C
解:如图,①ADE146
①ADB180OADE34O
①ADBAHD
①AHDADB50O34016O
①l1∥l2
①GIFAHD16O
①EGFGIF
①EGFGIF60O16O44O
故选:C.
16. A
解:令y0,则x2m2x0和x2m20
解得x0或xm2或xm或xm
不妨设m0
0关于原点对称,又这四个交点中每相邻两点间的距离都相等
0和m,①m,
第 13 页 共 25 页
0与原点关于点m,0对称
①m,2①2mm2
①m2或m0(舍去)
m2①抛物线yxm的对称轴为x0,抛物线yxmx的对称轴为x2
22222①这两个函数图象对称轴之间的距离为2.
故选:A.
二、填空题
17. 4(答案不唯一,满足3k9均可)
18. ①5 ①2
219. ①30 ①23
解:(1)作图如下:
根据中间正六边形的一边与直线l平行及多边形外角和,得ABC60
A906030
故答案为:30.
(2)取中间正六边形的中心为O,作如下图形
第 14 页 共 25 页
由题意得:AG∥BF,AB∥GF,BFAB
四边形ABFG为矩形
ABGF
BACFGH,ABCGFH90
RtABC≌RtGFHSAS
BCFH
在Rt△PDE中,DE1,PE3
由图1知AGBF2PE23
由正六边形的结构特征知:OM1233
2BC1BFCH31
2ABBC3133
tanBAC33BD2AB31
又1DE21
2BEBDDE3
ONOMBE23
故答案为:23.
三、解答题
20.
(1)珍珍第一局的得分为6分.
(2)k6.
第 15 页 共 25 页 【小问1详解】
解:由题意得4321426(分)
答:珍珍第一局的得分为6分.
【小问2详解】
解:由题意得3k3110k32613
解得:k6.
221.
(1)S1a3a2,S25a1,当a2时,S1S223
(2)S1S2,理由见解析
【小问1详解】
2解:依题意得,三种矩形卡片的面积分别为:S甲a,S乙a,S丙1
2①S1S甲3S乙2S丙a3a2,S25S乙S丙5a1
①S1S2a3a25a1a8a3
222①当a2时,S1S2282323.
【小问2详解】
S1S2,理由如下:
2①S1a3a2,S25a1
①S1S2a3a25a1a2a1a1
222①a1
①S1S2a10
①S1S2.
22.
(1)中位数为3.5分,平均数为3.5分,不需要整改
(2)监督人员抽取的问卷所评分数为5分,中位数发生了变化,由3.5分变成4分
【小问1详解】
解:由条形统计图可知,客户所评分数按从小到大排列后,第10个数据是3分,第11个数据是4分.
2
第 16 页 共 25 页 ①客户所评分数的中位数为:343.5(分)
2由统计图可知,客户所评分数的平均数为:11233645553.5(分)
20①客户所评分数的平均数或中位数都不低于3.5分
①该部门不需要整改.
【小问2详解】
设监督人员抽取的问卷所评分数为x分,则有:
3.520x3.55
201解得:x4.55
①调意度从低到高为1分,2分,3分,4分,5分,共5档
①监督人员抽取的问卷所评分数为5分
①45
①加入这个数据,客户所评分数按从小到大排列之后,第11个数据不变依然是4分,即加入这个数据之后,中位数是4分.
①与(1)相比,中位数发生了变化,由3.5分变成4分.
2,a23.
(1)C1的最高点坐标为3,(2)符合条件的n的整数值为4和5.
【小问1详解】
2解:①抛物线C1:ya(x3)2
1,c1.
92
①C1的最高点坐标为3,2①点A(6,1)在抛物线C1:ya(x3)2上
①1a(63)22,解得:a1
92①抛物线C1的解析式为y(x3)2,令x0,则c(03)21.
【小问2详解】
解:①到点A水平距离不超过1m的范围内可以接到沙包
19192,①点A的坐标范围为51
1
7,第 17 页 共 25 页 ,当经过51时,15218n511
8解得n17.
5182,当经过71时,1741
71741n
①57解得nn711
8①符合条件的n的整数值为4和5.
24.(1)7cm
(2)11cm
2(3)EF25π253cm,EFEQ.
cm,EQ=63【详解】解:(1)连接OM
①O为圆心,OCMN于点C,MN48cm
①MC1MN24cm
21AB25cm
2①AB50cm
①OM①在RtOMC中
OCOM2MC22522427cm.
(2)①GH与半圆的切点为E
①OEGH
①MN∥GH
①OEMN于点D
①ANM30,ON25cm
第 18 页 共 25 页 ①OD125ONcm
22①操作后水面高度下降高度为:
25117cm.
22(3)①OEMN于点D,ANM30
①DOB60
①半圆的中点为Q
①AQQB
①QOB90
①QOE30
①EFtanQOEOE253cm
3EQ=30π2525π=cm
18062523π①25325π50325π0
3666①EFEQ.
25.
(1)l1的解析式为yx6,l2的解析式为yx15.
(2)①xm10,y20m.①l3的解析式为yx30,图象见解析
(3)5a3c8b
【小问1详解】
设l1的解析式为ykxb,把M(4,2)、N(2,4)代入,得
k14kb2,
解得:b62kb4①l1的解析式为yx6.
将l1向上平移9个单位长度得到的直线l2的解析式为yx15.
【小问2详解】
①①点P按照甲方式移动了m次,点P从原点O出发连续移动10次
第 19 页 共 25 页 ①点P按照乙方式移动了10m次
①点P按照甲方式移动m次后得到的点的坐标为2m,m.
①点2m,m按照乙方式移动10m次后得到的点的横坐标为2m10mm10,纵坐标为m210m20m
①xm10,y20m.
①由于xym1020m30
①直线l3的解析式为yx30.
函数图象如图所示:
【小问3详解】
①点A,B,C的横坐标依次为a,b,c,且分别在直线l1,l2,l3上
①Aa,a6,Bb,b15,Cc,c30
设直线AB的解析式为ymxn
把A,B两点坐标代入,得
9m1mana6ba,
解得:mbnb15n69aba①直线AB的解析式为y1①A,B,C三点始终在一条直线上
99ax6
baba
第 20 页 共 25 页 ①c199a6c30
baba整理得:5a3c8b.
即a,b,c之间的关系式为:5a3c8b.
26.(1)见解析
(2)①CBD90,x13.①723
或668x2
(3)2x16【小问1详解】
①将线段MA绕点M顺时针旋转n0n180到MA
①AMAM
①AMA的平分线MP所在直线交折线ABBC于点P
①AMPAMP
又①PMPM
①A\'MPAMP(SAS)
①APAP.
【小问2详解】
①①AB8,DA6,A90
①BDAB2AD210
①BC211,CD12
①BCBD211①BC2BD2CD2
①CBD90.
如图所示,当n180时
222102144,CD2122144
第 21 页 共 25 页
①PM平分AMA
①PMA90
①PM∥AB
①DNM∽DBA
①DNDMMN
DBDABADN2MN
1068810,MN
3320
3①DM2,DA6
①①DN①BNBDDN①PBNNMD90,PNBDNM
①PBN∽DMN
20PB3PBBN①,即
82DMMN3①解得PB5
①xABPB8513.
①如图所示,当P点在AB上时,PQ2,AMPAMP
第 22 页 共 25 页 ①AB8,DA6,A90
①BDABAD6810,sinDBA2222AD63
BD105①BPBQ210sinDBA33
5①APABBP81014
3314AP7. ①tanAMPtanAMP3AM46如图所示,当P在BC上时,则PB2,过点P作PQAB交AB的延长线于点Q,延长MP交AB的延长线于点H
①PQBCBDDAB90
①QPB90PBQDBA
①PQB∽BAD
①PQQBPB
BAADBDPQQBPB
86104836PB,BQPB
555546
5即①PQ①AQABBQ①PQAB,DAAB
第 23 页 共 25 页 ①PQ∥AD
①HPQ∽HMA
①HQPQ
HAAM8HQ5
①464HQ5解得:HQ92
1592HQ1523
①tanAMPtanAMPtanQPH8PQ65723.
综上所述,tanAMP的值为或66【小问3详解】
解:①当0x8时
①P在AB上
如图所示,过点A作AEAB交AB于点E,过点M作MFAE于点F,则四边形AMFE是矩形
①AEFM,EFAM4
①AMP≌AMP
①PAMA90
①PAEFAM90
又AMFFAM90
①PAEAMF
又①AEPMFA90
第 24 页 共 25 页 ①APE∽MAF
①APPEAE
MAAFFM①APAPx,MAMA4,设FMAEy,AEh
xxyh
即4h4y①y4h,4xyxh4
x4hxh4
x①4x8x2
整理得h2x168x2即点A到直线AB的距离为2.
x16
第 25 页 共 25 页
更多推荐
直线,客户,距离,评分,移动
发布评论