2023年12月31日发(作者:洛阳二模数学试卷)

初一数学规律题应用知识汇总

“有比较才有鉴别”。通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。揭示的规律,常常包含着事物的序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

初中数学考试中,经常出现数列的找规律题,下面就此类题的解题方法进行探索:

一、基本方法——看增幅

(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。然后再简化代数式a+(n-1)b。

例:4、10、16、22、28……,求第n位数。

分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n位数是:4+(n-1)

6=6n-2

例1、已知一个面积为S的等边三角形,现将其各边n(n为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如上图所示).

(1)当n = 5时,共向外作出了 个小等边三角形

(2)当n = k时,共向外作出了 个小等边三角形(用含k的式子表示).

n=3 n=4 n=5

……

例2、如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个,……,则在第n个图形中,互不重叠的三角形共有 个(用含n的代数式表示)。

图1 图2 图3

(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差

天行健,君子以自强不息。

第1页,共15页

数列)。如增幅分别为3、5、7、9,说明增幅以同等幅度增加。此种数列第n位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;

2、求出第1位到第第n位的总增幅;

3、数列的第1位数加上总增幅即是第n位数。

此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。

例1.古希腊数学家把数1,3,6,10,15,21,……,叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差为 。

妙题赏析:

规律类的中考试题,无论在素材的选取、文字的表述、题型的设计等方面都别具一格,令人耳目一新,其目的是继续考察学生的创新意识与实践能力,在往年“数字类”、“计算类”、“图形类”的基础上,今年又推陈出新,增加了“设计类”与“动态类”两种新题型,现将历年来中考规律类中考试题分析如下:

1、设计类

【例1】(2005年大连市中考题)在数学活动中,小明为了求的值(结果用n表示),设计如图a所示的图形。(1)请你利用这个几何图形求值为 。

的(2)请你利用图b,再设计一个能求的值的几何图形。

【例2】(2005年河北省中考题)观察下面的图形(每一个正方形的边长均为1)和相应的等式,探究其中的规律:

天行健,君子以自强不息。

第2页,共15页

(1)写出第五个等式,并在下边给出的五个正方形上画出与之对应的图示;

(2)猜想并写出与第n个图形相对应的等式。

解析:【例1】(1)(2)可设计如图1,图2, 图3,图4所示的方案:

【例2】(1),对应的图形是

(2)。

此类试题除要求考生写出规律性的答案外,还要求设计出一套对应的方案,本题魅力四射,光彩夺目,极富挑战性,要求考生大胆的尝试,力求用图形说话。考察学生的动手实践能力与创新能力,体现了“课改改到哪,中考就考到哪!”的命题思想。

3、数字类

【例5】(2005年福州市中考题)瑞士中学教师巴尔末成功地从光谱数据,,,,……,中得到巴尔末公式,从而打开了光谱奥妙的大门。请你按这种规律写出第七个数据是 。

解析:【例5】这列数的分子分别为3,4,5的平方数,而分母比分子分别小4,则第7个数的分子为81,分母为77,故这列数的第7个为

【例6】(2005年长春市中考题)按下列规律排列的一列数对(1,2)(4,5)(7,8),…,第5个数对是 。

天行健,君子以自强不息。

第3页,共15页

解析:【例6】有序数对的 前一个数比后一个数小1,而每一个有序数对的第一个数形成等差数数列,1,4,7,故第5个数为13,故第5个有序数对为(13,14)。

【例7】(2005年威海市中考题)一组按规律排列的数:个数是

,,,,,…请你推断第9解析:【例7】中这列数的分母为2,3,4,5,6……的平方数,分子形成而二阶等差数列,依次相差2,4,6,8……故第9个数为1+2+4+6+8+10+12+14+16=73,分母为100,故答案为

4、计算类

【例10】(2005年陕西省中考题)观察下列等。

式:

式可以表示为 。

解析:【例10】

,…… 则第n个等【例11】(2005年哈尔滨市中考题)观察下列各式:,,,……根据前面的规律,得: 。(其中n为正整数)

解析:【例11】

【例12】(2005年耒阳市中考题)观察下列等式:观察下列等式:4-1=3,9-4=5,16-9=7,25-16=9,36-25=11,……这些等式反映了自然数间的某种规律,设n(n≥1)表示了自然数,用关于n的等式表示这个规律为 。

解析:【例12】5、 图形类

【例13】(2005年淄博市中考题)在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点。观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第10个正方形(实线)四条边上的整点共有 个。

(n≥1,n表示了自然数)

天行健,君子以自强不息。

第4页,共15页

解析:【例13】第一个正方形的整点数为2×4-4=4,第二个正方形的 正点数有3×4-4=8,第三个正方形的整点数为4×4-4=12个,……故第10个正方形的整点数为11×4-4=40,

【例14】(2005年宁夏回自治区中考题) “”代表甲种植物,“”代表乙种植物,为美化环境,采用如图所示方案种植。按此规律,第六个图案中应种植乙种植物 株。

【例14】第一个图案中以乙中植物有2×2=4个,第二个图案中以乙中植物有3×3=9个,第三个图案中以乙中植物有4×4=16个,……故第六个图案中以乙中植物有7×7=49个.

【例15】(2005年呼和浩特市中考题)如图,是用积木摆放的一组图案,观察图形并探索:第五个图案中共有 块积木,第n个图案中共有 块积木。

【例15】第一个图案有1块积木,第二个图案形有1+3=4=2的平方,第三个图案有1+3+5=9=3的平方,……故第5个图案中积木有1+3+5+7+9=25=5的平方个块,第n个图案中积木有n的平方个块。

综观规律性中考试题,考察了学生收集数据,分析数据,处理信息的能力,考生在回答此类试题时,要体现“从特殊到一般,从抽象到具体”的思想,要从简单的情形出发,认真比较,发现规律,分析联想,归纳猜想,推出结论,一举成功。

2007•无锡)图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面-层有一个圆圈,以下各层均比上-层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=

如果图1中的圆圈共有12层,

(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是;

天行健,君子以自强不息。

第5页,共15页

(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数-23,-22,-21,…,求图4中所有圆圈中各数的绝对值之和.

解析:(1)图3中依次排列为1,2,4,7,11……,如果用后项减前项依次得到1,2,3,4,5……,正好是等差数列,再展开原数列可以看出第一位是1,从第二位开始后项减前项得到等差数列,分解一下:1,1+1,1+1+2,1+1+2+3,1+1+2+3+4……,从分解看,第n个圆圈的个数应为1+(1+2+3+4+……n),而1+2+3+4+……+n正好是连续自然数和的公式推导,上面已给出了公式: 1+2+3+…+n=

n项公式为1+

,则第,已知共有12层,那么求图3最左边最底层这个圆圈中的数应是12层的第一个数,那么1+11(11+1)/2=67.

解析:(2)已知图中的圆圈共有12层,按图4的方式填上-23,,-22,-21,……,求图4中所有圆圈中各数的绝对值之和?

第一层到第十二层共有多少个圆圈呢,运用等差数列求和公式得:(1+12)12/2=78个,那78个圆圈中有多少个负数,多少个正数呢,从已知条件可以看出,第一个数是-23,到-1有23个负数,1个0,78-24=54个正数, 1至54,所以分段求和,两段相加得到图4中所有圆圈的和。第一段:S=首项末项项数=(|-23|+|-1|)*23/2=276,第二段=(1+54)*54/2=1485,相加后得1761。

2例如、观察下列数表:

解析:根据数列所反映的规律,第行第列交叉点上的数应为______ .(乐山市2006年初中毕业会考暨高中阶段招生统一考试)这一题,看上去内容比较多,实际很简单。题目条件里的数构成一个正方形。让我们求的是左上角至右下角对角线上第n个数是多少。我们把对角线上的数抽出来,就是1,3,5,7,……。这是奇数从小到大的排列。于是,问题便转化成求第n个奇数的表达式。即2n-1。

三、 要善于比较

“有比较才有鉴别”。通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。揭示的规律,常常包含着事物的序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

天行健,君子以自强不息。

第6页,共15页

例如,观察下列各式数:0,3,8,15,24,……。试按此规律写出的第100个数是

。”

解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。我们把有关的量放在一起加以比较:

给出的数:0,3,8,15,24,……。

序列号: 1,2,3, 4, 5,……。

容易发现,已知数的每一项,都等于它的序列号的平方减1。因此,第n项是n-1,第100项是100-1。

如果题目比较复杂,或者包含的变量比较多。解题的时候,不但考虑已知数的序列号,还要考虑其他因素。

譬如,日照市2005年中等学校招生考试数学试题“已知下列等式:

22① 1=1;

② 13+23=32;

③ 13+23+33=62;

④ 13+23+33+43=102 ;

…… ……

由此规律知,第⑤个等式是

32

.”

解析:这个题目,在给出的等式中,左边的加数个数在变化,加数的底数在变化,右边的和也在变化。所以,需要进行比较的因素也比较多。就左边而言,从上到下进行比较,发现加数个数依次增加一个。所以,第⑤个等式应该有5个加数;从左向右比较加数的底数,发现它们呈自然数排列。所以,第⑤个等式的左边是1+2+3+4+5。再来看等式的右边,指数没有变化,变化的是底数。等式的左边也是指数没有变化,变化的是底数。比较等式两边的底数,发现和的底数与加数的底数和相等。所以,第⑤个等式右边的底数是(1+2+3+4+5),和为15。

四、要善于寻找事物的循环节

有些题目包含着事物的循环规律,找到了事物的循环规律,其他问题就可以迎刃而解。

譬如,玉林市2005年中考数学试题:“观察下列球的排列规律(其中●是实心球,○是空心球):

●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……

从第1个球起到第2004个球止,共有实心球

个。”

这些球,从左到右,按照固定的顺序排列,每隔10个球循环一次,循环节是●○○●●○○○○○。每个循环节里有3个实心球。我们只要知道2004包含有多少个循环节,就容易计算出实心球的个数。因为2004÷10=200(余4)。所以,2004个球里有200个循环节,还余4个球。200个循环节里有200×3=600个实心球,剩下的4个球里有2个实心球。所以,一共有602个实心球。

六、要进行计算尝试

233333

天行健,君子以自强不息。

第7页,共15页

找规律,当然是找数学规律。而数学规律,多数是函数的解析式。函数的解析式里常常包含着数学运算。因此,找规律,在很大程度上是在找能够反映已知量的数学运算式子。所以,从运算入手,尝试着做一些计算,也是解答找规律题的好途径。

例如,汉川市2006年中考试卷数学“观察下列各式:0,x,x,2x,3x,5x,8x,……。试按此规律写出的第10个式子是

123456

。”

这一题,包含有两个变量,一个是各项的指数,一个是各项的系数。容易看出各项的指数等于它的序列号减1,而系数的变化规律就不那么容易发现啦。然而,如果我们把系数抽出来,尝试做一些简单的计算,就不难发现系数的变化规律。

系数排列情况:0,1,1,2,3,5,8,……。

从左至右观察系数的排列,依次求相邻两项的和,你会发现,这个和正好是后一项。也就是说原数列相邻两项的系数和等于后面一项的系数。使用这个规律,不难推出原数列第8项的系数是5+8=13,第9项的系数是8+13=21,第10项的系数是13+21=34。

所以,原数列第10项是34x。

9一、数字排列规律题

1、下面数列后两位应该填上什么数字呢?2 3 5 8 12 17 __ __

2、请填出下面横线上的数字。 1 1 2 3 5 8 ____ 21

5、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是( ).

A.1 B.2 C.3 D.4

7、一组按规律排列的数:21371321,,,,,…… 请你推断第9个数是 .

49162536229、观察下列各式;①、1+1=1×2 ;②、2+2=2×3; ③、3+3=3×4 ;………请把你猜想到的规律用自然数n表示出来 。

10、观察下面的几个算式:①、1+2+1=4; ②、1+2+3+2+1=9;

③、1+2+3+4+3+2+1=16;④、1+2+3+4+5+4+3+2+1=25,……根据你所发现的规律,请你直接写出第n个式子

12、把数字按如图所示排列起来,从上开始,依次为第一行、第二行、第三行、……,中间用虚线围的一列,从上至下依次为1、5、13、25、……,则第10个数为________。

第1行 1

第2行 -2 3

第3行 -4 5 -6

第4行 7 -8 9 -10

第5行 11 -12 13 -14 15

………………(第13题)

13、已知一列数:1,―2,3,―4,5,―6,7,… 将这列数排成如上所示的形式:按照上述规律排下去,那么第10行从左边数第5个数等于 .

14、观察下列各算式:

1+3=4=2的平方,1+3+5=9=3的平方,1+3+5+7=16=4的平方…

按此规律

(1)试猜想:1+3+5+7+…+2005+2007的值?

天行健,君子以自强不息。

第8页,共15页

(2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少 ?

(3)小凡在计算时发现,11×11=121,111×111=12321,1111×1111=1234321,他从中发现了一个规律。你能根据他所发现的规律很快地写出 111111111×111111111=______吗? 答案是___________________________。

(4)四个同学研究一列数:1,-3,5,-7,9,-11,13,……照此规律,他们得出第n个数分别如下,你认为正确的是 ( )

A.2n-1 B.1-2n C.(1)(2n1) D.(1)nn1(2n1)

(5)有一列数a1,a2,a3,,an,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a12,则a2007为___________.

(6)观察数列1,1,2,3,5,8,x,21,y,……,则2x-y=____________

1234567822,24,28,216,232,264,2128,2256, …,请你(7)观察下列各式:根据上述规律,猜想8的末位数字是_________.

(8)观察下列各式:

101312

1323321323336213233343102

333312310________ … … 猜想:15、观察数表,根据其中的规律,在数表中的 内填入适当的数。

1

1 -1

1 -2 1

1 -3 3 1

1 -4 6 -4 1

1 -5 -10 5 -1

1 -6 -20 15 -6 1

天行健,君子以自强不息。

第9页,共15页

17. 观察下面一列有规律的数

123456,,,,,,, 根据这个规律可知第n个数是 (n是正整数)

3815243548

二、几何图形变化规律题

5、用同样大小的黑、白两种颜色的棋子摆设如下图所示的正方形图案,则第n个图案需要用白色棋子

枚(用含有n的代数式表示)

………

6、观察下面图形我们可以发现:第1个图中有1个正方形,第2个图中共有5个正方形,第3个图中共有14个正方形,按照这种规律下去的第5个图形共有________个正方形。

7、下图是某同学在沙滩上用石于摆成的小房子.

观察图形的变化规律,写出第n个小房子用了 块石子.

8、用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n)个图案中有白色地砖 块。

..

10.将一张长方形的纸对折,如图所示可得到一条折痕(图中虚线). 继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到_ 条折痕 .如果对折n次,可以得到 条折痕 .

……

天行健,君子以自强不息。

第10页,共15页

三、根据已知等式探究规律

2、观察下面的几个算式:

1+2+1=4,

1+2+3+2+1=9,

1+2+3+4+3+2+1=16,

1+2+3+4+5+4+3+2+1=25,…

根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____

4、观察下列等式:21=2;22=4;23=8;24=16;25=32;26=64;27=128;……

用你发现的规律确定22007的个位数学数字是

分析:观察计算结果的末位数字,依次按2,4,8,6循环出现。而2007÷4=501……3,故22007的个位数字与23的个位数字相同,所以2的个位数字是 8

19.研究下列等式,你会发现什么规律?

1×3+1=4=22

2×4+1=9=32

3×5+1=16=42

4×6+1=25=52

设n为正整数,请用n表示出规律性的公式来.

5、探索规律 可写成 , 可写成

可写成 ,可写成

(1)把这个规律用含有n的式子写出来;

(2)计算95.

2 6、观察:

计算:

天行健,君子以自强不息。

第11页,共15页

7、…,若10bb102符合前面式子的规律,则abaa。

9、一只小虫在数轴上原点处,第一次向右跳了1个单位,紧接着又向左跳了2个单位,第3次向右跳了3个单位,第4次向左跳了4个单位……按以上规律,它共跳了101次,你能确定小虫在数轴上的最后落点表示什么数吗?

10.观察下面一列数:-1,2,-3,4,-5,6,-7,...,将这列数排成下列形式

按照上述规律排下去,那么第10行从左边第9个数是 .

-1

2-34

-56-7-9

10-1112-1314-151611.观察下列等式9-1=8

......第8题

16-4=12

25-9=16

36-16=20

…………

这些等式反映自然数间的某种规律,设n(n≥1)表示自然数,用关于n的等式表示这个规律为.

前4次跳动图

四、与数阵有关的问题

1、]下图所示是一个数表,现用一个矩形在数表中任意框出4个数]则:

(1)、a、c的关系是:________________ __;

(2)、当a+b+c+d=32时,a=____ ______.

4 5 6 7 8 9 10 11 12 1314 15 16 17 1819 20 21 22 2324 25 26 27 28日 一 二 三 四 五 六

1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31

天行健,君子以自强不息。

第12页,共15页

2、上面给出的是2004年3月份的日历表,任意圈出一竖列上相邻的三个数,请你运用方程思想来研究,发现这三个数的和不可能是( )A.69 B.54 C.27 D.40

3、在如图所示的2003年1月份的日历中,用一个方框圈出任意3×3个数

星期日 星期一 星期二 星期三 星期四 星期五 星期六

1 2 3 4

5 6 7 8 9 10 11

12 13 14 15 16 17 18

19 20 21 22 23 24 25

26 27 28 29 30 31

(1) 从左下角到右上角的三个数字之和为45,那么这9个数的和是多少?这9个日期中最后一天是1月几日?

(2) 用这样的方框能否圈出总和为162的9个数?

五、与视图、展开图有关的问题

1、如图是几个小立方块所搭的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的主视图为( )

2

1

1

2

C

D

A B

2、下图是由一些相同的小正方体构成的几何体的三视图,在这个几何体中,小正方体的个数是( )

你前似锦图(12)

A、 7 B、 6 C、 5 D、 4

程3、水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如上图,是一个正方体的平面展开图,若图中“锦”为前面,“似”为下面,“前”为后面,则“祝”表示正方体的

面.

4、下图可以沿线折叠成一个带数字的立方体,每三个带数字的面交于立方体的一个顶点,则相交于一个顶点的三个面上的数字之和最小是

1

(A)、7

(B)、8

(C)、9

(D)、 10

6 2 4 5

3

5、如图,P1是一块半径为1的半圆形纸板,在P1的左下端剪去一个半径为1的半圆后得到图形P2,然2,Pn,,记纸板Pn的后依次剪去一个更小的半圆(其直径为前一个被剪掉半圆的半径)得图形P3,P4,面积为Sn,试计算求出S2 ;S3 ;并猜想得到SnSn1

n2。

天行健,君子以自强不息。

第13页,共15页

(6)人们经常利用图形的规律来计算一些数的和. 如在边长为1的网格图1中,从左下角开始,相邻的黑折线围成的面积分别是1,3,5,7,9,11,13,15,17面的规律:

1+3=22 ; 1+3+5=32 ; 1+3+5+7=42 ;1+3+5+7+9=52 ;……

请你按照上述规律,计算1+3+5+7+9+11+13的值,并在图1中画出能表示该算式的图形;

13579,它们有下图1

(2)请你按照上述规律,计算第n条黑折线与第n1条黑折线所围成的图形面积;

(3)请你在边长为1的网格图2中画出下列算式所表示的图形.

1+8=32 ;

1+8+16=52 ;

1+8+16+24=72 ;

1+8+16+24+32=92 .

图2

(7)观察图1-27中有几个三角形?由此你发现三角形的个数有什么规律呢?

一个三角形 3个三角形 ______个三角形 ______个三角形 _______个三角形(n个点)

(8)下图(1)表示1张餐桌和6张椅子(每个小半圆代表1张椅子),若按这种方式摆

放20张餐桌需要的椅子张数是 。

天行健,君子以自强不息。

第14页,共15页

天行健,君子以自强不息。

第15页,共15页


更多推荐

规律,观察,下列,图形,个数,中考题,表示