2024年1月24日发(作者:郑州实验学校数学试卷)
数学模型方法简述
随着科学技术的迅速发展,数学模型这个词汇越来越多地出现在现代人的生产、工作和社会活动中。电气工程师必须建立所要控制的生产过程的数学模型,用这个模型对控制装置作出相应的设计和计算,才能实现有效的过程控制;气象工作者为了得到准确的天气预报,一刻也离不开根据气象站、气象卫星汇集的气压、雨量、风速等资料建立的数学模型;生理医学家有了药物浓度在人体内随时间和空间变化的数学模型,就可以分析药物的疗效,有效地指导临床用药;厂长经理们要是能够根据产品的需求状况、生产条件和成本、贮存费用等信息,筹划出一个合理安排生产和销售的数学模型,一定可以获得更大的经济效益。对于广大的科学技术人员和应用数学工作者来说,建立数学模型是沟通摆在面前的实际问题与他们掌握的数学工具之间的一座必不可少的桥梁。
那么,什么是数学模型,又是如何建立起这些形形色色的数学模型的呢?就让我们走近数学模型看一看吧!
函数关系可以说是一种变量相依关系的数学模型.数学模型方法是处理科学理论问题的一种经典方法,也是处理各类实际问题的一般方法.掌握数学模型方法是非常必要的.在此,对数学模型方法作一简述.
数学模型方法(Mathematical Modeling)称为MM方法.它是针对所考察的问题构造出相应的数学模型,通过对数学模型的研究,使问题得以解决的一种数学方法.
一、数学模型的含义
数学模型是针对于现实世界的某一特定对象,为了一个特定的目的,根据特有的内在规律,做出必要的简化和假设,运用适当的数学工具,采用形式化语言,概括或近似地表述出来的一种数学结构.它或者能解释特定对象的现实性态,或者能预测对象的未来状态,或者能提供处理对象的最优决策或控制.数学模型既源于现实又高于现实,不是实际原形,而是一种模拟,在数值上可以作为公式应用,可以推广到与原物相近的一类问题,可以作为某事物的数学语言,可译成算法语言,编写程序进入计算机.
二、数学模型的建立过程
建立一个实际问题的数学模型,需要一定的洞察力和想像力,筛选、抛弃次要因素,突出主要因素,做出适当的抽象和简化.全过程一般分为表述、求解、解释、验证几个阶段,并且通过这些阶段完成从现实对象到数学模型,再从数学模型到现实对象的循环.可用流程图表示如下:
现实对象的信息
验证 (检验)
现实对象
解释
(实际解答)
表达
(归纳)
数学模型
(演绎)
求解
数学模型的解答数学模型的解答
表述 根据建立数学模型的目的和掌握的信息,将实际问题翻译成数学问题,用数学语言确切地表述出来.
这一个关键的过程,需要对实际问题进行分析,甚至要做调查研究,查找资料,对问题进行简化、假设、数学抽象,运用有关的数学概念、数学符号和数学表达式去表现客观对象及其关系.如果现有的数学工具不够用时,可根据实际情况,大胆创造新的数学概念和方法去表现模型.
1
求解 选择适当的方法,求得数学模型的解答.
解释 数学解答翻译回现实对象,给实际问题的解答.
验证 检验解答的正确性.
例如,哥尼斯堡一条普雷格尔河,这条河有两个支流,在城中心汇合成大河,河中间有一小岛,河上有七座桥,如图1所示.18世纪哥尼斯堡的很多居民总想一次不重复地走过这七座桥,再回到出发点.可是试来试去总是办不到,于是有人写信给当时著名的数学家欧拉,欧拉于1736年,建立了一个数学模型解决了这个问题.他把A、B、C、D这四块陆地抽象为数学中的点,把七座桥抽象为七条线,如图2所示.
陆地 D
D
小岛
A
半岛 B
A
B
陆地 C
C
图1 图2
人们步行七桥问题,就相当于图2的一笔画问题,即能否将图2所示的图形不重复地一笔画出来,这样抽象并不改变问题的实质.
哥尼斯堡七桥问题是一个具体的实际问题,属于数学模型的现实原型.经过理想化抽象所得到的如图2所示的一笔画问题便是七桥问题的数学模型.在一笔画的模型里,只保留了桥与地点的连接方式,而其他一切属性则全部抛弃了.所以从总体上来说,数学模型只是近似地表现了现实原型中的某些属性,而就所要解决的实际问题而言,它是更深刻、更正确、更全面地反映了现实,也正由此,对一笔画问题经过一定的分析和逻辑推理,得到此问题无解的结论之后,可以返回到七桥问题,得出七桥问题的解答,不重复走过七座桥回到出发点是不可能的.
数学模型,从广义上讲,一切数学概念、数学理论体系、各种数学公式、各种方程式、各种函数关系,以及由公式系列构成的算法系统等等都可以叫做数学模型.从狭义上讲,只有那些反映特定问题或特定的具体事物系统的数学关系的结构,才叫做数学模型.在现代应用数学中,数学模型都作狭义解释.而建立数学模型的目的,主要是为了解决具体的实际问题.
三、函数模型的建立
研究数学模型,建立数学模型,进而借鉴数学模型,对提高解决实际问题的能力,以及提高数学素养都是十分重要的.建立函数模型的步骤可分为:
(1) 分析问题中哪些是变量,哪些是常量,分别用字母表示;
(2) 根据所给条件,运用数学或物理知识,确定等量关系;
(3) 具体写出解析式yf(x),并指明定义域.
例1 重力为P的物体置于地平面上,设有一与水平方向成角的拉力F,使物体由静止
开始移动,求物体开始移动时拉力F与角之间的函数模型(图3).
F
解 由物理知,当水平拉力与摩擦力平衡时,物体开始移动,而摩擦力是与正压力PFsin成正
2
P
图3
比的(设摩擦系数为),故有
Fcos(PFsin),
即
FP (0°<<90°).
cossin建立函数模型是一个比较灵活的问题,无定法可循,只
有多做些练习才能逐步掌握.
例2 在金融业务中有一种利息叫做单利.设p是本金,r是计息的利率,c是计息期满应付的利息,n是计息期数,I是n个计息期(即借期或存期)应付的单利,A是本利和.求本利和A与计息期数n的函数模型
解
计息期的利率c计息期满的利息 ,即r本金p.
由此得
cpr,
单利与计息数成正比,即n个计息期应付的单利I为
Icn,
因为
cpr,
所以
Iprn,
本利和为
ApI,
即
Apprn,
可得本利和与计息期数的函数关系,即单利模型
Ap(1rn).
四、数学建模方法
数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图).数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并解决实际问题的数学模型的一种强有力的数学手段.
常用的数学建模方法如下:
(一) 机理分析法 从基本物理定律以及系统的结构数据来推导出数学模型的方法
1. 比例分析法 —— 建立变量之间函数关系的最基本、最常用的方法.
2. 代数方法——求解离散问题(离散的数据、符号、图形)的主要方法.
3. 逻辑方法——是数学理论研究的重要方法,用以解决社会学和经济学等领域的实际问题,在决策论,对策论等学科中得到广泛应用.
4. 常微分方程——解决两个变量之间的变化规律,关键是建立“瞬时变化率”的表达式.
5. 偏微分方程——解决因变量与两个以上自变量之间的变化规律.
(二) 数据分析法 从大量的观测数据利用统计方法建立数学模型的方法
1. 回归分析法——用于对函数f(x)的一组观测值(xi,f(xi))(i1,2,n),确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.
2. 时序分析法——处理的是动态的相关数据,又称为过程统计方法.
3
(三)仿真和其他方法
1. 计算机仿真(模拟)——实质上是统计估计方法,等效于抽样试验.
① 离散系统仿真——有一组状态变量.
② 连续系统仿真——有解析表达式或系统结构图.
2. 因子试验法——在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构.
3. 人工现实法——基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统.
五、名师谈数学建模竞赛
1.全国人大常委会副委员长、著名数学家丁石孙
建模竞赛,我认为是一个非常有意义的活动.很多人都知道,数学是非常重要的.我们教了几十年的数学,曾经花了很多力气想使得大家能够认识到数学的重要性,但是我们没有找到一个合适的方法.我觉得,建模竞赛是一个很好的方法,使得更多的学生,包括他们有关的朋友,能够认识到数学的真正用处.因为,数学对于学生的培养,不只是数学定理、数学公式,这其实是次要的,像刚才同学所说的,更重要的是培养同学一个正确的思想方法,而且依据自己所学到的知识,能够不断创新,不断地找出新的途径.这不是在课堂里死啃几个定理就能够解决的.我们用什么办法才能让更多的人,更多的学生认识到这个事情呢?我觉得,建模竞赛是一个很好的方法.
2.前教育部副部长周远清
数学建模竞赛的特点是题目由工程技术、管理科学中的实际问题简化加工而成,对数学知识要求不深,一般没有事先设定的标准答案,但留有充分余地供参赛者发挥其聪明才智和创造精神.由于竞赛是由三名大学生组成一队,在三天时间内分工合作,共同完成一篇论文,因而也培养了学生的合作精神.加之竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准,因此,这项活动的开展有利于对学生知识、能力和素质的全面培养,既丰富、活跃了广大同学的课外生活,也为优秀学生脱颖而出创造了条件.
3.中国工业与应用数学学会理事长、中科院院士曾庆存
同学们不要忘记,中华文化是博大精深的,很可能下个世纪是中西文化的合璧.现在已经有很多苗头,光靠西方的演绎或者是还原论的东西解决不了问题,说不定要借助于东方的文化,正像莱布尼茨借助于中国的哲学一样,还有控制论、系统论是借助于中国的思维.希望同学们看怎么样能够把中华文化的精华和西方的结合起来,我看我们大有前途.下个世纪,有人说是知识经济,是美国人提出来的,我们可以同意,也可以不同意.但有一点,知识在经济或者社会发展当中所占的比例是越来越大,甚至会起决定性的作用,而知识思维的方式,不管是定量的或是定性的描述,都离不开数学.我希望同学们加把劲,把我国实现中等发达的过程更缩短一点.
4.叶其孝、姜启源教授谈大学生数学建模竞赛
数学建模:不仅仅是一项竞赛.
数学建模,专家给它下的定义是:“通过对实际问题的抽象、简化,确定变量和参数,并应用某些‘规律’建立起变量、参数间的确定的数学问题(也可称为一个数学模型),求解该数学问题,解释验证所得到的解,从而确定能否用于解决问题多次循环、不断深化的过程.”简而言之,就是建立数学模型来解决各种实际问题的过程.
1985年,美国率先举办了大学生数学建模竞赛.
1992年中国工业与应用数学学会开始组织全国大学生数学建模竞赛.
1994年起,这项竞赛由教育部高教司和中国工业与应用数学学会共同组织.
4
姜启源教授介绍说,全国大学生数学建模竞赛是面向全国大学生的群众性科技活动.参赛者应根据题目要求,完成一篇包括模型的假设、建立和求解、计算机方法的设计和计算机实现、结果的分析和检验、模型的改进等方面的论文(即答卷).竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实现问题,有较大的灵活性供参赛者发挥其创造性,结果的正确性和文字表述的清晰程度为主要标准.全国大学生数学建模竞赛的规模逐年扩大,参赛学生也从几百人增加到几千人.每年还有不少学生参加美国大学生的数学建模竞赛,成绩优秀,在国际上产生了很大的影响.为什么这样的单项竞赛能够产生如此的吸引力呢?开展这项竞赛并开设相关的课程,对高等院校的教学工作会起什么样的作用?对大学生全面素质的提高又有什么样的帮助?对记者的问题,叶其孝教授回答说,这种竞赛对参加者来说,是一种综合的训练,在相当程度上模拟了大学生毕业以后的工作环境.参赛者不要求预先掌握深入的专门知识,只需要学过普通高校的数学课程;更主要的是要靠参赛者自己动脑子,自己查找文献资料,同队成员讨论研究,齐心协力完成答卷.因此,它对学生的能力培养是多方面的.叶教授将之归纳为:应用数学进行分析、推理、证明和计算的能力;“双向翻译”(即用数学语言表达实际问题,用普通人能理解的语言表达数学的结果)的能力;应用计算机及相应数学软件的能力;应变能力(即独立查找文献,消化和应用的能力);组织、协调、管理特别是及时妥协的能力;交流表达的能力;写作的能力;创造性、想像力、联想力和洞察力.它还可以培养学生坚强的意志,培养自律、“慎独”的优秀品质,培养正确的数学观.数学模型是联系实际问题与数学的桥梁,是各种应用问题严密化、精确化、科学化的途径,是发现问题、解决问题和探索新真理的工具.
数学模型具有解释、判断、预测等重要功能,它在各个领域的应用会越来越广泛.其主要原因是:
(1)社会生活的各个方面正在日益数量化,人们对各种问题的要求愈来愈精确;
(2)计算机的发展为精确化提供了条件;
(3)很多无法实验或费用很大的实验问题,用数学模型进行研究是一个有效途径.
很多像牛顿一样伟大的科学家都是建立和应用数学模型的大师,他们将各个不同的科学领域同数学有机地结合起来,在不同的学科中取得了巨大的成就.如力学中的牛顿定律,电磁学中的麦克斯韦方程组,化学中的门捷列夫周期表,生物学中的孟德尔遗传定律等都是经典学科中应用数学模型的光辉范例.目前在计算机的帮助下数学模型在生态、地质、航空等方面有了更加广泛和深入的应用.因此,从某种意义上讲,数学建模是培养现代化高科技人才的重要途径.
数学建模课程可以培养和提高学生下列能力:
(1)洞察能力.许多提出的问题往往不是数学化的,这就是需要建模工作者善于从实际工作提供的原形中抓住其数学本质;
(2)数学语言翻译能力,即把经过一定抽象和简化的实际用数学的语言表达出来,形成数学模型,并对数学的方法和理论推导或计算得到的结果,能用大众化的语言表达出来,在此基础上提出解决某一问题的方案或建议;
(3)综合应用分析能力.用已学到的数学思想和方法进行综合应用分析,并能学习一些新的知识;
(4)联想能力.对于不少的实际问题,看起来完全不同,但在一定的简化层次下,它们的数学模型是相同的或相似的.这正是数学应用广泛性的体现,这就是培养学生有广泛的兴趣,多思考,勤奋踏实地工作,通过熟能生巧达到触类旁通的境界;
(5)各种当代科技最新成果的使用能力.目前主要是应用计算机和相应的各种软件包,这不仅能够节省时间,得到直观形象的结果,有利与用户深入讨论,而且能够养成自觉应用最新科技成果的良好习惯.由于数学建模是以解决实际问题和培养学生应用数学的能力为目的的,
5
它的教学内容和方式是多种多样的.从教材来看,有的强调数学方法,有的强调实际问题,有的强调分析解决问题的过程;从教学方式来看,有的以讲为主,有的以练为主,有的在数学实验室中让学生探索,有的带领学生到企事业中去合作解决真正的实际问题.尽管数学建模已有了很久的历史,数学建模课程却还是很年轻的一门课程.在70 年代末和80年代初,英国著名的剑桥大学专门为研究生开设了数学建模课程,差不多同时,欧美一些发达国家开始把数学建模的内容列入研究生、大学生以至中学生的教学计划中去,并于1983年开始举行两年一度的
“数学建模教学和应用国际会议”进行定期交流.数学建模教学及其各种活动发展异常迅速,成为当代数学教育改革的主要方向之一 .
6
更多推荐
数学,问题,数学模型,建模,方法,实际,应用
发布评论