2023年12月11日发(作者:万维中考复习数学试卷)

三年级下册数学广角教案(优秀3篇)

作为一名老师,常常要根据教学需要编写教案,教案是教学活动的依据,有着重要的地位。怎样写教案才更能起到其作用呢?教案应该怎么制定呢?这次漂亮的为亲带来了3篇《三年级下册数学广角教案》,希望能为您的思路提供一些参考。

三年级下册数学广角教案 篇一教学内容:人教版三年级下册第九单元P108例1

教学目标:

1、结合具体情境体会用“韦恩图”解决重叠问题的价值,掌握用“韦恩图”解决一些简单的重叠问题题目的方法,培养学生的思维能力。

2、进一步渗透集合的思想,在解决实际问题的过程中感受选择解决问题策略的重要性,养成善于思考的良好习惯,提高学习数学的兴趣。

教学重难点:理解集合图的各部分意义及解决简单问题的计算方法。

教具、学具:课件、带有学生姓名的小贴片。

教学过程:

一、问题情境,导入新课

师:出示下面统计表

师:朝阳小学三(1)班选出8人参加学校的语文活动小组,又选出9人参加数学活动小组。参加两个小组的一共有多少人?

生:8+9=17人,

师:同意吗?一定吗?

生:齐说同意、一定。

师:出示图1集合圈,

语文组 数学组

师:你能把参加语文组和数学组人的姓名图片贴在下面两个圈里吗?

师:相机出示带有17个同学姓名的图片。

【评析:尊重学生的认知基础,唤醒学生已有的知识经验,找准了学生已有的知识经验与新知的衔接点,为新知的学习巧搭“脚手架”,也使问题的引出顺理成章。】

二、探究新知

1、问题的引出

师:出示例题中的统计表

师:仔细观察这张表格提供的信息与前面的表格提供的信息有什么不同?

生:有几个同学重复了。

生:有三个同学既参加参加了语文小组又参加了数学小组。

师:刚才这位同学说“重复”是什么意思?

生:重复,就是一个人参加了两项活动。

师:在实际生活中你们遇到过这种情况了吗?

生:遇到过,比如我既参加了象棋小组又参加了绘画小组。

生:我参加了三个兴趣组。

师:如果还用两个圈来表示参加语文组和数学组的人数你认为下面那幅图能代表你们的意思?

生:图2。因为图2有重复的部分。

师:只能用图2来表示来表示重复的关系吗?

生:两个长方形(正方形、三角形)交叉在一起也行。

师:谁来说说重复的部分是什么意思?

生:重复部分就是两项活动都参加人。

师:同意吗? 生:同意。

师:参加语文组的有几个人?参加数学组的呢?

生:语文组有8人,数学组有9人。

师:根据表中提供的信息,你觉得用哪副图来表示参加两个小组人数之间的关系比较合适?请同学们贴一贴。

【评析:把学生探究“集合图”的过程,变为教师直接给出两幅“集合图”,并让学生结合自己的生活经验,说说两个集合图所表示的实际意义,同时又拓展了学生对集合图的认知,为建构抽象的数学模型搭建了平台,也体现了基于学生认知基础出发的教学理念。】

2、交流汇报

师:展示学生的作品并强调不管圆圈中学生姓名怎么放,但这三个重复的同学都放在重叠的部分上。

师:怎样计算参加两个小组的人数一共有多少人?

生:一共是14人,我是数出来的。

生:8+9=17 17-3=14

师:第一个表格为什么直接用8+9=17就算出参加两个小组的人数,而这一次8+9后还要再减去3呢?

生:因为如果还是17的话就把杨明、李芳、刘云多算了一次,因此要减去3。

生:第一个表格没有重复参加的,第二个表格有重复参加的。

师:不管用数的方法还是用算式计算都要注意什么?

生:不能把重复的三个人多算了一次。

【评析:在展示学生的作品时,对圆圈中学生的姓名位置不同的贴放,教师引导学生及时归纳、小结,这既能让学生体会出集合图本身各部分之间所存在的关系又能让学生直观地感知各个数据与集合图之间的关系。同时让学生反思、比较由前后两个表格所出现的不同的计算方法,这既沟通了已有的知识经验与新知间的联系,又彰显出解决新问题的关键点。】

3、明确“韦恩图”各部分表示的意思,感受其的价值。

师:刚才我们通过数一数,算一算的方法,得出了参加两个小组的人数。现在谁来说说这个集合图有几部分组成?每部分各表示什么意思?

生:三部分,左边一小部分表示只参加语文组的人数,中间一部分表示两个小组都参加的人数,右边一小部分表示只参加数学组的人数。

师:相机在集合图上标示出“只参加语文组”、“既参加语文组又参加数学组”、“只参加数学组”的。字样。

师:简单介绍“韦恩图”来历。

师:在实际生活中,往往提供的信息不会像表格中那样的。

师:相机把例题呈现在统计表中的学生姓名打乱。

师:如果给的是现在这样的信息,你觉得“韦恩图”和文字所提供给的信息,哪一个更能清晰地表示出只参加“语文人的”、“只参加数学的”、“两项都参加的”这三者中间的关系呢?

生:用“韦恩图”来表示。

师:用“韦恩图”不仅能清晰的表示出各部分之间的关系,还便于我们计算。

师:你认为在什么样情况下使用“韦恩图”来解决问题呢?

生:有重复关系的,

师:相机板示课题:数学广角——重叠问题。

【评析:让学生表述“韦恩图”各部分之间的关系,给了学生一个完整的认知,同时使学生对“韦恩图”中的认知更趋于明朗化。而把例题中提供的信息打乱,让学生在反思中比较,就为学生体会“韦恩图”的价值提供了更具有说服力的素材。】 三、巩固应用,落实“双基”

1、教材p110练习二十四第1题

2、教材P110练习二十四第2题

四、拓展延伸,发展能力

师:改动教材例题中提供的信息方式为:三(1)班由8人参加语文活动小组,有9人参加数学活动小组,参加两个小组的一共有多少人?

师:请同学读题,并与原例题进行比较

师:请同学拿出第二组供贴图用的学具片

师:结合生活实际,展开想象,在教师提供的集合圈中摆一摆,之后再在小组里交流一下,并算出每一种情况下,参加两个小组的人数共多少人?

交流回报:

生:8+9=17人,我是把两个圆圈分开摆的

生:8+9=17人 17-2=15,我是把两个圆圈交叉在一起的,并且交叉的部分是2人。

生:参加两个小组的一共只有9人,我是把参加语文组的人数全部圈在数学组里面的。

师:结合学生的口述,相机展示学生的作品

师:重点引导学生交流结果是9人的集合图各部分之间的关系。

师:为什么同样是8人参加语文组、9人参加数学组结果会出现不同的情况呢?

生:因为上一道题告诉我们有几人重复的,而这道题没有告诉有几人重复的,结果就有几种可能性。

生:这个题目没有前面两个题目讲的清楚,不知道会有什么情况。

师:也就是说这道题没有确定语文组和数学组之间的具体关系。

师:那你认为做这样的题目首先要注意什么?

生:搞清重复的人数。

生:在画图时要确定相交的部分应该是几人。

生:考虑问题要全面些。

师:通过刚才我们解决的这个题目,比较一下结果,你有什么发现?

生:重复的部分越多,参加两项活动的人数就越少。

生:要想参加两项活动的人数多最好互不交叉。

生:当参加两项活动的人数最少时,这个数就是其中一个较大的数。

师:配合学生的讲解,相机用课件动态演示两个集合图变化的过程。

五、全课总结

师生交流:这节课我们解决了什么问题?在解决这一问题的过程中用到了什么策

略?这一策略以前你用过吗?

三年级下数学广角教案 篇二教学目标:

1.知识与技能:使学生初步认识几分之一,会读、会写几分之一,能比较分子是1的分数的大小;培养学生观察、比较的能力及操作、表达能力和合作交流的意识;

2.过程与方法:让学生经历建立分数概念的过程,体验动手操作、合作交流的方法;让学生主动去寻求分数,能自己往下写分数;

3.情感、态度与价值观:让学生在体验中获得成功感。

教学重、难点:认识几分之一的分数;初步建立几分之一分数的概念。

教学用具:各类卡片图,各类折纸。

教学流程:

(一)创设情境,导入新知:

T:小朋友们,我们都知道在奥运赛场上有公平、公正的裁判员,在法庭上有公平、公正的大法官,在学校里老师又用公平、公正的方法来教育我们,你也想做一个公平、公正的裁判员、小法官和小老师吗?(想!)那老师就来考考你们。

出示:小华、小丽两个小朋友。

a:出示6个大苹果,怎样公平、公正来分一分。(要求学生说出“平均分成两份”,学生上去分好。)

b:出示四罐牛奶,怎样公平、公正来分一分。(“平均分成两份”,学生分。)

c:出示两个汉堡,又该怎样来分?(齐分,学生上去分。)

(小结:我们都把它们进行了“平均分”板书。)

d:出示一个大饼,你能公平公正地来分一分吗?你能用我们已经学过的数来表示吗?

揭题:我们要用一个新的数来表示,它叫做“分数”(板书)

(二)探究新知,不断摸索:

1.认识。

T:刚才我们把一个大饼通过平均分分成了两份,其中的一份我们就可以用一个分数来表示,这个分数就是“”。那“”怎么来书写呢?跟着老师一起写(学生举起手指一起写),先写“──”表示平均分,再写2表示把大饼平均分成了2份,再写1表示其中的一份,读作二分之一(齐读“”两遍,并举起手跟老师一起边演示边说:把大饼平均分成两份,每份是它的二分之一。)

教师拿起分好的大饼:左边这一份是整个大饼的,那右边这一份呢?(齐说:)

同桌活动:从信封中拿出各种折纸,你能折一折这些图形的吗?(请学生交流,注意语言的表达。)

T:老师也忍不住想来折一折了(拿起一个正方形的折纸,随便一折,将它剪下,举起一块说是“”。)(学生反对,强调没有平均分不能用分数来表示。)

T:在日常生活中我们有没有碰到过的例子?(学生交流。)

2.自己再想一个分数,把这个分数折出来,画出来。

请学生同桌合作,利用折纸,折出自己想出的一个分数,用画阴影部分的方法表示好,并请画得最快的几个小朋友将自己的成果展示在黑板上,写上你所表示的分数。(教师选取部分,一起评价,并说说这个分数所表示的意思,注意学生语言的表达)

(三)应用迁移,巩固提高:

1.一口气来说一说:

2.用手势来判一判:

3.根据分数在图中涂阴影,仔细观察,比较一下这些分数的大小:

4.它是一个长方形,把它这样对半平分,再平分……在每一块上涂上颜色,你知道每种颜色是整体的几分之一吗?

(四)总结反思,拓展升华:

1.今天,你收获了多少,能一起来分享吗?

2.课外,请你再去折一折,你还能折出多少分数来?

3.你还想知道些什么?

三年级数学下册数学广角评课稿 篇三《集合问题》是小学三年级上册数学广角第一课时的内容,这个内容是日常生活中应用比较广泛的数学知识,本节课涉及到一种最基本的数学思想方法:集合思想。集合问题具有高度的抽象性,在这里由于学生初次接触,对他们来说既是一个认知的跨越,也是一个思维的跨越。因此从教学内容到课型的特点,都是对教师的挑战。下面我从教学效果这一角度谈一谈我对这节课的看法:

一节课,教学效果的优劣最终落脚点都要落到学生身上。从本节课的整个课堂教学来看, 老师在教学目标的定位上、对教材的处理、调动学生学习主动性、落实新课标理念等方面都有成功之处。在教学中,林老师为学生创设了具有启发性的教学情境,大胆放手,使学生在实践、探索与交流的数学活动过程中,经历集合图产生的过程,让学生在体验和建构中理解集合图的本质,突破教学的难点。具体表现在以下几个方面:

根据小学三年级学生的认知水平,本节课只要让学生初步体会集合思想,能利用集合的思想方法解决简单的实际问题,在解决实际问题中进一步体会集合思想即可。要想真正理解集合图的意义,必须经历集合图的建构过程,即集合图是怎样产生的,这是本节课的关键点也是重难点。老师整堂课也就是定位在让学生初步认识简单的韦恩图,通过现场交流、师生辩论、事实确认来引发认知冲突,进而让学生经历探究并获得体验,经历知识的形成过程,符合三年级学生的认知规律和认知水平,整堂课学生学得都比较自然和轻松,教学目标达成度较理想。

集合思想的重要表现形式是韦恩图。教师在教学中并未直接教学,而是采用主动探究的形式,在学生一次一次排列调整的活动过程中,韦恩图的模型渐渐浮现。林老师在此过程中起了适当的点拔作用。学生经历了韦恩图产生的过程中初步理解了对韦恩图的认识过程,引导学生用各种方法计算总人数。通过这样的设计,让学生经历韦恩图的产生过程,并充分感知和体验韦恩图的作用,把具体问题上升到抽象,找到解决问题的捷径,而且整个过程不断有思维的碰撞,环环相扣,扎实有效,使教学目标真正落到了实处。探讨之处:在设计一个活动时,没有想到:体现了什么数学思想,怎样才能把数学思想活动起来,而不是停留在形式上、表面上。

总之,数学课不仅是让学生学数学,更重要的是让学生欣赏数学、体验数学的价值,从欣赏和体验中去感悟数学道理、培养数学素养。本节课学生在学习活动的参与中,真正的做到了自主探索、不断创新,体验到了数学学习的快乐与成功。

读书破万卷下笔如有神,以上就是为大家整理的3篇《三年级下册数学广角教案》,希望可以启发您的一些写作思路,更多实用的范文样本、模板格式尽在。


更多推荐

学生,参加,集合,数学