process是什么意思cess在线翻译读音例句-大概8点20分发什么意思
2023年11月7日发(作者:翻译器拍照扫一扫)
小学数学典型的25道习题
1 把一根木料锯成3段需要9分钟,那么用同样的速度把这根
木料锯成5段,需要多少分?
解题思路:
把一根木料锯成3段,只锯出了(3-1)个锯口,这样就可以求出
锯出每个锯口所需要的时间,进一步即可以求出锯成5段所需的时
间。
答题:
解:9÷(3-1)×(5-1)=18(分)
答:锯成5段需要18分钟。
2. 一个车间,女工比男工少35人,男、女工各调出17人后,
男工人数是女工人数的2倍。原有男工多少人?女工多少人?
解题思路:
女工比男工少35人,男、女工各调出17人后,女工仍比男工
少35人。这时男工人数是女工人数的2倍,也就是说少的35人是
女工人数的(2-1)倍。这样就可求出现在女工多少人,然后再分别求
出男、女工原来各多少人。
答题:
解:35÷(2-1)=35(人)
女工原有:
35+17=52(人)
男工原有:
52+35=87(人)
答:原有男工87人,女工52人。
3. 李强骑自行车从甲地到乙地,每小时行12千米,5小时到
达,从乙地返回甲地时因逆风多用1小时,返回时平均每小时行多
少千米?
解题思路:
由每小时行12千米,5小时到达可求出两地的路程,即返回时
所行的路程。由去时5小时到达和返回时多用1小时,可求出返回
时所用时间。
答题:
解:12×5÷(5+1)=10(千米)
答:返回时平均每小时行10千米。
5. 甲、乙二人同时从相距18千米的两地相对而行,甲每小时
行走5千米,乙每小时走4千米。如果甲带了一只狗与甲同时出
发,狗以每小时8千米的速度向乙跑去,遇到乙立即回头向甲跑
去,遇到甲又回头向飞跑去,这样二人相遇时,狗跑了多少千米?
解题思路:
由题意知,狗跑的时间正好是二人的相遇时间,又知狗的速
度,这样就可求出狗跑了多少千米。
答题:
解:18÷(5+4)=2(小时)
8×2=16(千米)
答:狗跑了16千米。
6. 有红、黄、白三种颜色的球,红球和黄球一共有21个,黄
球和白球一共有20个,红球和白球一共有19个。三种球各有多少
个?
解题思路:
由条件知,(21+20+19)表示三种球总个数的2倍,由此可求出
三种球的总个数,再根据题目中的条件就可以求出三种球各多少
个。
答题:
解:总个数:
(21+20+19)÷2=30(个)
白球:30-21=9(个)
红球:30-20=10(个)
黄球:30-19=11(个)
答:白球有9个,红球有10个,黄球有11个。
7. 在一根粗钢管上接细钢管。如果接2根细钢管共长18米,
如果接5根细钢管共长33米。一根粗钢管和一根细钢管各长多少米?
解题思路:
根据题意,33米比18米长的米数正好是3根细钢管的长度,
由此可求出一根细钢管的长度,然后求一根粗钢管的长度。
答题:
解:(33-18)÷(5-2)=5(米)
18-5×2=8(米)
答:一根粗钢管长8米,一根细钢管长5米。
8. 水泥厂原方案12天完成一项任务,由于每天多生产水泥
4.8吨,结果10天就完成了任务,原方案每天生产水泥多少吨?
解题思路:
由题意知,实际10天比原方案10天多生产水泥(4.8×10)吨,
而多生产的这些水泥按原方案还需用(12-10)天才能完成,也就是说
原方案(12-10)天能生产水泥(4.8×10)吨。
答题:
解:4.8×10÷(12-10)=24(吨)
答:原方案每天生产水泥24吨。
9. 学校举办歌舞晚会,共有80人参加了表演。其中唱歌的有
70人,跳舞的有30人,既唱歌又跳舞的有多少人?
解题思路:
由题意知,实际10天比原方案10天多生产水泥(4.8×10)吨,
而多生产的这些水泥按原方案还需用(12-10)天才能完成,也就是说
原方案(12-10)天能生产水泥(4.8×10)吨。
答题:
解:4.8×10÷(12-10)=24(吨)
答:原方案每天生产水泥24吨。
10. 学校举办语文、数学双科竞赛,三年级一班有59人,参加
语文竞赛的有36人,参加数学竞赛的有38人,一科也没参加的有
5人。双科都参加的有多少人?
解题思路:
参加语文竞赛的36人中有参加数学竞赛的,同样参加数学竞赛
的38人中也有参加语文竞赛的,如果把两者加起来,那么既参加语
文竞赛又参加数学竞赛的人数就统计了两次,所以将参加语文竞赛
的人数加上参加数学竞赛的人数再加上一科也没参加的人数减去全
班人数就是双科都参加的人数。
答题:
解:36+38+5-59=20(人)
答:双科都参加的有20人。
11. 学校买了4张桌子和6把椅子,共用640元。2张桌子和5
把椅子的价钱相等,桌子和椅子的单价各是多少元?
解题思路:
由“2张桌子和5把椅子的价钱相等”这一条件,可以推出4
张桌子就相当于10把椅子的价钱,买4张桌子和6把椅子共用640
元,也就相当于买16把椅子共用640元。
答题:
解:5×(4÷2)+6=16(把)
640÷16=40(元)
40×5÷2=10O(元)
答:桌子和椅子的单价分别是100元、40元。
12. 父亲今年45岁,5年前父亲的年龄是儿子的4倍,今年儿
子多少岁?
解题思路:
5年前父亲的年龄是(45-5)岁,儿子的年龄是(45-5)÷4岁,再
加上5就是今年儿子的年龄。
答题:
解:(45-5)÷4+5 =10+5 =15(岁)
答:今年儿子15岁。
13. 有两桶油,甲桶油重是乙桶油重的4倍,如果从甲桶倒入
乙桶18千克,两桶油就一样重,原来每桶各有多少千克油?
解题思路:
“如果从甲桶倒入乙桶18千克,两桶油就一样重”可推出:甲
桶油的重量比乙桶多(18×2)千克,又知“甲桶油重是乙桶油重的4
倍”,可知(18×2)千克正好是乙桶油重量的(4-1)倍。
答题:
解:18×2÷(4-1)=12(千克)
12×4=48(千克)
答:原来甲桶有油48千克,乙桶有油12千克。
14. 光明小学举办数学知识竞赛,一共20题。答对一题得5
分,答错一题扣3分,不答得0分。小丽得了79分,她答对几道,
答错几道,有几题没答?
解题思路:
根据题意,20题全部答对得100分,答错一题将失去(5+3)
分,而不答仅失去5分。小丽共失去(100-79)分。再根据(100-
79)÷8=2(题)……5(分),分析答对、答错和没答的题数。
答题:
解:(5×20-75)÷8=2(题)……5(分)
20-2-1=17(题)
答:答对17题,答错2题,有1题没答。
15. 光明小学举办数学知识竞赛,一共20题。答对一题得5
分,答错一题扣3分,不答得0分。小丽得了79分,她答对几道,
答错几道,有几题没答?
解题思路:
“从两车头相遇到两车尾相离”,两车所行的路程是两车身长
之和,即(240+264)米,速度之和为(20+16)米。根据路程、速度和
时间的关系,就可求得所需时间。
答题:
解:(240+264)÷(20+16)=504÷30 =14(秒)
答:从两车头相遇到两车尾相离,需要14秒。
16. 一列火车长600米,通过一条长1150米的隧道,火车的速
度是每分700米,问火车通过隧道需要几分?
解题思路:
火车通过隧道是指从车头进入隧道到车尾离开隧道,所行的路
程正好是车身与隧道长度之和。
答题:
解:(600+1150)÷700 =1750÷700 =2.5(分)
答:火车通过隧道需2.5分。
17.小明从家里到学校,如果每分走50米,那么正好到上课时
间;如果每分走60米,那么离上课时间还有2分。问小明从家里到
学校有多远?
解题思路:
在每分走50米的到校时间内按两种速度走,相差的路程是
(60×2)米,又知每秒相差(60-50)米,这就可求出小明按每分50米
的到校时间。
答题:
解:60×2÷(60-50)=12(分)
50×12=600(米)
答:小明从家里到学校是600米。
18.有一周长600米的环形跑道,甲、乙二人同时、同地、同向
而行,甲每分钟跑300米,乙每分钟跑400米,经过几分钟二人第
一次相遇?
解题思路:
由条件可知,二人第一次相遇时,乙比甲多跑一周,即600
米,又知乙每分钟比甲多跑(400-300)米,即可求第一次相遇时经过
的时间。
答题:
解:600÷(400-300)=600÷100 =6(分)
答:经过6分钟两人第一次相遇
19.有一个长方形纸板,如果只把长增加2厘米,面积就增加8
平方米;如果只把宽增加2厘米,面积就增加12平方厘米。这个长
方形纸板原来的面积是多少?
解题思路:
由“只把宽增加2厘米,面积就增加12平方厘米”,可求出原
来的长是:(12÷2)厘米,同理原来的宽就是(8÷2)厘米,求出长和
宽,就能求出原来的面积。
答题:
解:(12÷2)×(8÷2)=24(平方厘米)
答:这个长方形纸板原来的面积是24平方厘米。
20.妈妈买苹果和梨各3千克,付出20元找回7.4元。每千克
苹果2.4元,每千克梨多少元?
解题思路:
用去的钱数除以3就是1千克苹果和1千克梨的总钱数。从这
个总钱数里去掉1千克苹果的钱数,就是每千克梨的钱数。
答题:
解:(20-7.4)÷3-2.4 =12.6÷3-2.4 =4.2-2.4 =1.8(元)
答:每千克梨1.8元。
21.甲乙两人同时从相距135千米的两地相对而行,经过3小时
相遇。甲的速度是乙的2倍,甲乙两人每小时各行多少千米?
解题思路:
由题意知,甲乙速度和是(135÷3)千米,这个速度和是乙的速
度的(2+1)倍。
答题:
解:135÷3÷(2+1)=15(千米)
15×2=30(千米)
答:甲乙每小时分别行30千米、15千米。
22.盒子里有同样数目的黑球和白球。每次取出8个黑球和5个
白球,取出几次以后,黑球没有了,白球还剩12个。一共取了几次?
盒子里共有多少个球?
解题思路:
两种球的数目相等,黑球取完时,白球还剩12个,说明黑球多
取了12个,而每次多取(8-5)个,可求出一共取了几次。
答题:
解:12÷(8-5)=4(次)
8×4+5×4+12=64(个)
或8×4×2=64(个)
答:一共取了4次,盒子里共有64个球。
23.上午6时从汽车站同时发出1路和2路公共汽车,1路车每
隔12分钟发一次,2路车每隔18分钟发一次,求下次同时发车时
间。
解题思路:
1路和2路下次同时发车时,所经过的时间必须既是12分的倍
数,又是18分的倍数。也就是它们的最小公倍数。
答题:
解:12和18的最小公倍数是36
6时+36分=6时36分
答:下次同时发车时间是上午6时36分。
24.父亲今年45岁,儿子今年15岁,多少年前父亲的年龄是儿
子年龄的11倍?
解题思路:
父、子年龄的差是(45-15)岁,当父亲的年龄是儿子年龄的11
倍时,这个差正好是儿子年龄的(11-1)倍,由此可求出儿子多少岁
时,父亲是儿子年龄的11倍。又知今年儿子15岁,两个岁数的差
就是所求的问题。
答题:
解:(45-15)÷(11-1)=3(岁)
15-3=12(年)
答:12年前父亲的年龄是儿子年龄的11倍。
25.王老师有一盒铅笔,如平均分给2名同学余1支,平均分给
3名同学余2支,平均分给4名同学余3支,平均分给5名同学余4
支。问这盒铅笔最少有多少支?
解题思路:
根据题意,可以将题中的条件转化为:平均分给2名同学、3
名同学、4名同学、5名同学都少一支,因此,求出2、3、4、5的
最小公倍数再减去1就是要求的问题。
答题:
解:2、3、4、5的最小公倍数是60
60-1=59(支)
答:这盒铅笔最少有59支。
Ovel?f是什么意思l?f在线翻译读音例句-上海奇丽美
更多推荐
小学数学年龄
发布评论