每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。
  把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
  例如把28分解质因数
  几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数。
  公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:
  1和任何自然数互质。
  相邻的两个自然数互质。
  两个不同的质数互质。
  当合数不是质数的倍数时,这个合数和这个质数互质。
  两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。
  如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。
  如果两个数是互质数,它们的最大公约数就是1。
  几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……
  3的倍数有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。。
  如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。
  如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
  几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。
  (二)小数
  1 小数的意义
  把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。
  一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
  一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。
  在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。
  2小数的分类
  纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25 、 0.368 都是纯小数。
  带小数:整数部分不是零的小数,叫做带小数。
  例如: 3.25 、 5.26 都是带小数。
  有限小数:小数部分的数位是有限的小数,叫做有限小数。
  例如: 41.7 、 25.3 、 0.23 都是有限小数。
  无限小数:小数部分的数位是无限的小数,叫做无限小数。
  例如: 4.33 …… 3.1415926 ……
  无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。
  例如:∏
  循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。
  例如: 3.555 …… 0.0333 …… 12.109109 ……
  一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。
  例如: 3.99 ……的循环节是“ 9 ” , 0.5454 ……的循环节是“ 54 ” 。
  纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。
  例如: 3.111 …… 0.5656 ……
  混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。 3.1222 …… 0.03333 ……
  写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环
  节只有
  一个数字,就只在它的上面点一个点。例如: 3.777 …… 简写作 0.5302302 …… 简写作
  。
  (三)分数
  1 分数的意义
  把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。

更多推荐

部分,小数,叫做,合数