【经典】小学四年级数学奥数竞赛试卷及答案一图文百度文库(1)
一、拓展提优试题
1.(8分)小红去买水果,如果买5千克苹果则少4元,如果买6千克梨则少3元,已知苹果比梨每500克贵5角5分,那么小红买水果共带了 元.
2.如果a 表示一个三位数,b表示一个两位数,那么,a+b最小是 a+b最大是 ,a﹣b最小是 ,a﹣b最大是 .
3.如图所示,5个相同的两位数相加得两位数,其中相同的字母表示相同的数字,不同的字母表示不同的数字,则= .
4.某个学习小组由男生和女生共8位同学,其中女生比男生多,那么男生的人数可能是 .
5.将1~11填入下图的各个圆圈内,使每条线段上三个圆圈内的数的和都等于18.
6.(7分)棱长都是1厘米的63个白色小正方体和1个黑色小正方体,可以拼成一个大正方体,问:一共可以拼成 种不同的含有64个小正方体的大正方体.
7.一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩7米.这捆电线原来有多少米?
8.一列火车身长90米,火车以每分钟160米的速度通过山洞,用了3分钟,山洞长 390 米.
9.在一个停车场,共有24辆车,其中汽车是4个轮子,摩托车是3个轮子,这些车共有86个轮子,那么三轮摩托车有 辆.
10.过元旦时,班委会用730元为全班同学每人买了一份价值17元的纪念品,剩余16元,那么,这个班共有学生 名.
11.小东和小荣同时从甲地出发到乙地,小东每分钟行50米,小荣每分钟行60米,小荣到达乙地后立即返回,若两人从出发到相遇用了10分钟,则甲、乙两地相距 米.
12.围棋24元一副,象棋18元一副,用300元恰好可以购买两种棋子共14副,其中象棋有 副.
13.(8分)如图所示,东东用35米长的栅栏在墙边围出一块梯形的地用来养猪,那么,这块养猪场的面积是 平方米.
14.(8分)杨树、柳树、槐树、桦树和梧桐树各一棵树种成一排,相邻两颗树之间的距离都是1米.杨树与柳树、槐树之间的距离相等,桦树与杨树、槐树之间的距离相等.那么
梧桐树与桦树之间的距离是 米.
15.100只老虎和100只狐狸分别为100组,每组两只动物,老虎总说真话,狐狸总说假话.当问及“组内另一只动物是狐狸吗?”结果这200只动物中恰有128只回答“是”,其它的都回答“不是”.那么同组2只动物都是狐狸的共有 组.
【参考答案】
一、拓展提优试题
1.解:设梨每千克x元,则每千克苹果x+0.55×2=(x+1.1)元
6x﹣3=5×(x+1.1)﹣4
6x﹣3=5x+5.5﹣4
6x﹣5x=1.5+3
x=4.5
6×4.5﹣3
=27﹣3
=24(元)
答:小红买水果共带了24元.
故答案为:24.
2.【分析】两个数越大,和就大,越小和就小,两个数越接近差越小,反之差就大,所以根据条件找出最大与最小的三位数与二位数,计算即可解答.
解:a+b最小是10+100=110,
a+b最大是99+999=1098,
a﹣b最小是100﹣99=1,
a﹣b最大是999﹣10=989.
故答案为:110,1098,1,989.
【点评】本题主要考查最大与最小问题,解题关键是知道最小的三位数是100,最大的三位数是999,最小的二位数是10,最大的二位数是99.
3.【分析】根据整数加法竖式计算的方法进行推算即可.
解:根据题意,由加法竖式可得:
个位上,5×B的末尾还是B,由5×0=0,5×5=25可得:B=0或B=5;
假设B=0,那么十位上,5×A=M,M要小于10,只有当A=1时,5×1=5,符合;
所以,A=1,B=0;
由以上推算可得:
假设B=5时,5×5=25,向十位进2;
十位上,5×A+2=M,M要小于10,只有当A=1时,5×1+2=7,符合;
所以,A=1,B=5;
由以上推算可得:
因此两位数是:10或15.
故答案为:10或15.
【点评】推算过程中,本题的关键是末尾数字相同,然后再进一步解答即可.
4.【分析】先假设男生和女生一样多,则男生有4人,女生有4人,因为女生比男生多,所以男生的人数一定小于4人,然后写出即可.
解:8÷2=4(人),
因为女生比男生多,所以男生的人数一定小于4人,
所以男生可能是1人,2人或3人;
故答案为:1人,2人或3人.
【点评】解答此题的关键:先假设男、女生一样多,求出男生人数,进而根据题意,进行分析、继而得出结论.
5.解:设中间的圆圈中的数是A;
根据题意可得:
1+2+3+4+5+6+7+8+9+10+11+A+A+A+A=18×5,
66+4A=90,
4A=24,
A=6;
那么每条线段剩下的两个数的和是:18﹣6=12;
又因为,1+11=12,2+10=12,3+9=12,4+8=12,5+7=12;
分别放到每条线段剩下的两个圆圈中;
由以上可得:
.
6.【分析】一共64个,4×4×4,①把黑色正方体放在顶点处,1种;②把黑色正方体放在棱中间,任选一个,2种;③把正方体放在每个面的中间4个,任选一个,4种;④把黑色正方体放在里面,从外边看不到,8种;然后把几种情况的种数相加即可.
解:①把黑色正方体放在顶点处,1种;②把黑色正方体放在棱中间,任选一个,2种;③把正方体放在每个面的中间4个,任选一个,4种;④把黑色正方体放在里面,从外边看不到,8种;
共:1+2+4+8=15(种);
答:一共可以拼成15种不同的含有64个小正方体的大正方体.
故答案为:15.
7.解:[(15+7﹣10)×2+3]×2
=[12×2+3]×2
=[24+3]×2
=27×2
=54(米)
答:这捆电线原来长54米.
8.解:160×3﹣90,
=480﹣90,
=390(米),
答:山洞长390米.
故答案为:390.
9.解:假设24辆全是4个轮子的汽车,则三轮车有:
(24×4﹣86)÷(4﹣3),
=10÷1,
=10(辆),
答:三轮车有10辆.
故答案为:10.
10.【分析】根据题意,由减法的意义,用730元减去16元,求出全班同学每人买一份纪念品的总钱数,再根据数量=总价÷单价,代入数据解答即可.
解:(730﹣16)÷17
=714÷17
=42(名);
答:这个班共有学生42名.
故答案为:42.
【点评】解答此题的关键是求出全班同学每人买一份纪念品的总钱数,再根据单价、数量和总价之间的关系进行解答.
11.【分析】两人从出发到相遇用了10分钟,也就是二人相遇时都行了10分钟,行了两个单程,因此先求出两人的速度和,再乘上相遇时间,再除以2,解决问题.
解:(50+60)×10÷2
=110×10÷2
=1100÷2
=550(米)
答:甲、乙两地相距550米.
故答案为:550.
【点评】此题根据关系式:速度和×相遇时间=路程,进而解决问题.
12.【分析】假设全是围棋,那么就有24×14=336元,这就比已知的300元多出了336﹣300=36元,因为一副围棋比一副象棋多24﹣18=6元,由此即可求得象棋的数量.
解:假设全是围棋,则象棋就有:
(24×14﹣300)÷(24﹣18)
=36÷6
=6(副);
答:其中象棋有6副.
故答案为:6.
【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.
13.解:(35﹣7)×7÷2
=28×7÷2
=98(平方米)
答:这块养猪场的面积是 98平方米.
故答案为:98.
14.解:杨树与柳树、槐树之间的距离相等,所有三种树的位置有可能是:柳□杨□槐,柳杨槐□□,□柳杨槐□,□□柳杨槐,其中□表示暂时不知道.
而桦树与杨树、槐树之间的距离相等,所以只有可能是:柳□杨桦槐,剩余的一个位置是梧桐树,
更多推荐
男生,关键,狐狸,正方体,圆圈
发布评论