湖南省长沙市大同小学五年级数学奥数竞赛试卷及答案
一、拓展提优试题
1.(7分)后羿朝三个箭靶分别射了三支箭,如图:他在第一个箭靶上得了29分,第二个箭靶上得了43分.请问他在第三个箭靶上得了 分.
2.(8分)小张有200支铅笔,小李有20支钢笔.每次小张给小李6支铅笔,小李还给小张1支钢笔.经过 次这样的交换后,小张手中铅笔的数量是小李手中钢笔数量的11倍.
3.小猫咪A、B、C、D、E、F排队依次从猫妈妈手中领鱼干,每只小猫咪每次领一条,领完后在道队尾继续排队领,直到鱼干发完.若猫妈妈有278条鱼干,则最后一个领到鱼干的小猫咪是 .
4.如图,在梯形ABCD中,若AB=8,DC=10,S△AMD=10,S△BCM=15,则梯形ABCD的面积是 .
5.某数学竞赛有10道题,规定每答对一题得5分,答错或不答扣2分.A、B两人各自答题,得分之和是58分,A比B多得14分,则A答对 道题.
6.解放军战士在洪水不断冲毁大坝的过程中要修好大坝,若10人需45分钟,20人需要20分钟,则14人修好大坝需 分钟.
7.四位数的所有因数中,有3个是质数,其它39个不是质数.那么,四位数有 个因数.
8.(8分)如果两个质数的差恰好是2,称这两个质数为一对孪生质数.
例如3和5是一对孪生质数,29和31也是一对孪生质数.在数论研究中,孪生质数是最热门的研究课题之一.华裔数学家张益唐在该课题的研究中取得了令人瞩目的成就,他的事迹激励着更多的青年学子投身数学研究.在不超过100的整数中,一共可以找到 对孪生质数.
9.(8分)6个同学约好周六上午8:00﹣11:30去体育馆打乒乓球,他们租了两个球桌进行单打比赛每段时间都有4 个人打球,另外两人当裁判,如此轮换到最后,发现每人都打了相同的时间,请问:每人打了
分钟.
10.观察下表中的数的规律,可知第8行中,从左向右第5个数是 .
11.(8分)在如图每个方框中填入一个数字,使得乘法竖式成立.那么,两个乘数的和是 .
12.如图是一个由26个相同的小正方体堆成的几何体,它的底层由5×4个小正方体构成,如果把它的外表面(包括底面)全部涂成红色,那么当这个几何体被拆开后,有3个面是红色的小正方体有 块.
13.如图是一个正方体的平面展开图,若该正方体相对的两个面上的数值相等,则a﹣b×c的值是 .
14.同学们去春游,带水壶的有80人,带水果的有70人,两样都没带的有6人.若既带水壶又带水果的人数是所有参加春游人数的一半,则参加春游的同学共有 人.
15.松鼠A、B、C共有松果若干,松鼠A原有松果26颗,从中拿出10颗平分给B、C,然后松鼠B拿出自己的18颗松果平均分给A、C,最后松鼠C把自己现有松果的一半平分给A、B,此时3只松鼠的松果数量相同,则松鼠C原有松果 颗.
【参考答案】
一、拓展提优试题
1.【分析】这个箭靶共三个环,设最小的环为a分,中间环为b分,最外环为c分,得:
第一个靶得分为:2b+c=29①
第二个靶得分为:2a+c=43②
第三个靶得分为:a+b+c③
通过等量代换,解决问题.
解:设最小的环为a分,中间环为b分,最外环为c分,得:
第一个靶得分为:2b+c=29①
第二个靶得分为:2a+c=43②
第三个靶得分为:a+b+c③
由①+②得:2a+2b+2c=29+43=72
即a+b+c=36
即第三个靶的得分为36分.
答:他在第三个箭靶上得了36分
故答案为:36.
2.解:依题意可知:
当第一次过后,小张剩余194只铅笔,小李剩余19只钢笔.
当第二次过后,小张剩余188只铅笔,小李剩余18只钢笔.
当第三次过后,小张剩余182只铅笔,小李剩余17只钢笔.
当第四次过后,小张剩余176只铅笔,小李剩余16只钢笔.正好是11倍.
故答案为:四
3.解:共有6只小猫咪,每发6条鱼重复出现,而278÷6=46…2,余数是2,则最后一个领到鱼干的小猫咪是B.
故答案为:B.
4.解:△ADM、△BCM、△ABM都等高,
所以S△ABM:(S△ADM+S△BCM)=8:10=4:5,
已知S△AMD=10,S△BCM=15,
所以S△ABM的面积是:(10+15)×=20,
梯形ABCD的面积是:10+15+20=45;
答:梯形ABCD的面积是45.
故答案为:45.
5.解:(58+14)÷2
=72÷2
=36(分)
答错:(5×10﹣36)÷(2+5)
=14÷7
=2(道)
答对:10﹣2=8道.
故答案为:8.
6.解:假设每人每分钟修大坝1份
洪水冲毁大坝速度:
(10×45﹣20×20)÷(45﹣20)
=(450﹣400)÷25
=50÷25
=2(份)
大坝原有的份数
45×10﹣2×45
=450﹣90
=360(份)
14人修好大坝需要的时间
360÷(14﹣2)
=360÷12
=30(分钟)
答:14人修好大坝需30分钟.
故答案为:30.
7.解:首先根据奇偶位数和相等一定是11的倍数.因数一共的个数是3+39=42(个),将42分解成3个数字相乘42=2×3×7.
=a×b2×c6.
如果是11×52×26=17600(不是四位数不满足条件).再看一下如果这个数字最小是=11×32×26=6336.
=3663=11×37×32.因数的个数共2×2×3=12(个).
故答案为:12个.
8.解:在不超过100的整数中,以下8组:3,5;5,7;11,13;17,19;29,31;41,43;59,61;71,73是孪生质数.
故答案为8.
9.解:6÷2=3(组)
11时30分﹣8是=3时30分=210分
210×2÷3
=420÷3
=140(分钟)
答:每人打了140分钟.
故答案为:140.
10.解:由图可知,第1行的数为1,
第2行的最后一个数为2×2=4,
第3行的最后一个数为3×3=9,
…
所以第7行最后一个数为7×7=49,
则第8行第1个数为49+1=50,第5个数为50+4=54,
更多推荐
大坝,研究,正方体,质数
发布评论