六年级小学数学上册应用题(50题)附答案
一、六年级数学上册应用题解答题
1.工程队挖一条水渠,第一天挖了全长的20%,第二天比第一天多挖72米,这时已挖的部分与未挖部分的比是4∶3,这条水渠长多少米?
解析:420米
【分析】
第一天挖了全长的20%,第二天比第一天多挖72米,此时两天挖好两个全长的20%多72米,已挖的部分与未挖部分的比是4∶3,已经挖好的部分占全长的,则72米对应的分率是全长的去掉两个20%,用分量÷分率即可求出全长。
【详解】
72÷(-20%-20%)
=72÷
=72×
=420(米)
答:这条水渠长420米。
【点睛】
要分析找准单位“1”的量及72米所对应的分率。
2.下图是由两个正方形和一个圆组成的,已知大正方形的面积是,那么阴影部分的面积是多少?(圆周率取3.14)
解析:26平方厘米
【分析】
根据图意可得:阴影部分的面积=圆的面积-小正方形的面积,已知大正方形的面积是,36=6×6,即大正方形的边长是6cm,也正是圆的直径;小正方形的对角线的长度是6cm,小正方形的面积是6×6÷2=18(平方厘米)。据此解答即可。
【详解】
36=6×6
3.14×(6÷2)2-6×6÷2
=3.14×9-18
=28.26-18
=10.26(平方厘米)
答:阴影部分的面积是10.26平方厘米。
【点睛】
本题属于求圆与组合图形面积的问题,这种类型的题目主要明确组合图形是由哪些基本的图形构成的,然后看是求几种图形的面积和还是求面积差,然后根据面积公式解答即可。
3.六年级举行“小制作比赛”,六(1)班同学上交32件作品,六(2)班比六(1)班多交,六(2)班交了多少件?
解析:40件
【分析】
由于六(2)班比六(1)班多交,所以可利用乘法求出六(2)班交了多少件。
【详解】
(件)
答:六(2)班交了40件。
【点睛】
本题考查了分数乘法的应用,已知一个数比另一个数多几分之几,求这个数,用乘法。
4.如图所示,大圆不动,小圆贴合着大圆沿顺时针方向不断滚动。小圆的半径是,大圆的半径是
(1)当小圆从大圆上的点出发,沿着大圆滚动,第一次回到点时,小圆的圆心走过路线的长度是多少厘米?
(2)小圆未滚动时,小圆上的点与大圆上的点重合,从小圆滚动后开始计算,当点第10次与大圆接触时,点更接近大圆上的点(    )。(括号里填。)
解析:(1)50.24厘米
(2)B
【分析】
(1)当小圆从大圆上的点 A 出发,沿着大圆滚动,第一次回到点 A 时,小圆的圆心走过路线的长度是半径为6+2=8厘米的圆一周的长度;
(2)小圆的半径是 2cm ,大圆的半径是 6cm,则小圆滚动3圈后才能回到A点,这个过程中M点与大圆接触3次;M第9次与大圆接触时,小圆又回到A点,小圆第10次与大圆接触时,是走了大圆一周的,即12.56厘米,更接近于B点。
【详解】
(1)2×3.14×(2+6)
=2×3.14×8
=50.24(厘米)
答:小圆的圆心走过路线的长度是50.24厘米。
(2)根据分析可得,当点 M 第10次与大圆接触时,点 M 更接近大圆上的点B。
【点睛】
本题考查圆的周长,解答本题的关键是分析圆的运动轨迹。
5.如图,用两个完全相同的正方形拼成一个长方形,图1是在长方形内所作的最大半圆,图2是长方形外的最小半圆。 
我们知道:
①图1中,长方形的面积与半圆的面积比为
②图2中,半圆的面积与长方形的面积比为
请从上面两个结论中选择一个,写出你的证明过程。
解析:证明①,设正方形的边长为r,S=2r×r=2r2  , S=πr2× = πr2  , S:S=2 2 πr2=
证明②,设半圆的半径为r,S=πr2  , S=πr2×4÷2=r2  , S:S=πr2:r2=π。
【详解】
证明①,设正方形的边长为r,长方形的面积=长×宽,所以图中S=2r×r=2r2  , 半圆的面积=πr2×  , 所以图中S=πr2×=πr2  , 然后作比即可;
证明②,设半圆的半径为r,半圆的面积=πr2×  , 所以图中S=πr2  , 内长方形的面积=半圆的面积×4÷π,所以图中S=πr2×4÷2=r2  , 然后作比即可。

更多推荐

面积,大圆,正方形,滚动