小学数学奥数基础教程(六年级)目30讲全
小学奥数基础教程(六年级)-1-小学奥数基础教程(六年级)
第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解
第一讲比较分数的大小
同学们从一开始接触数学,就有比较数的大小问题。比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两
种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。下面我们介绍另外几种方法。1.“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
小学奥数基础教程(六年级)-2-如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。2.化为小数。
这种方法对任意的分数都适用,因此也叫万能方法。但在比较大小时是否简便,就要看具体情况了。3.先约分,后比较。
有时已知分数不是最简分数,可以先约分。
4.根据倒数比较大小。
5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。也就是说,
6.借助第三个数进行比较。有以下几种情况:(1)对于分数m和n,若m>k,k>n,则m>n。
(2)对于分数m和n,若m-k>n-k,则m>n。
前一个差比较小,所以m<n。
(3)对于分数m和n,若k-m<k-n,则m>n。
小学奥数基础教程(六年级)
-3-注意,(2)与(3)的差别在于,(2)中借助的数k小于原来的两个分数m和n;(3)中借助的数k大于原来的两个分数m和n。
(4)把两个已知分数的分母、分子分别相加,得到一个新分数。新分数一定介于两个已知分数之间,即比其中一个分数大,比另一个分数小。
利用这一点,当两个已知分数不容易比较大小,新分数与其中一个已知分数容易比较大小时,就可以借助于这个新分数。
1.比较下列各组分数的大小:
答案与提示练习1
第二讲巧求分数
我们经常会遇到一些分数的分子、分母发生变化的题目,例如分子或分母加、减某数,或分子与分母同时加、减某数,或分子、分母分别加、减不同的数,得到一个新分数,求加、减的数,或求原来的分数。这类题目变化很多,因此解法也不尽相同。
数。
小学奥数基础教程(六年级)
-4-分析:若把这个分数的分子、分母调换位置,原题中的分母加、减1就变成分子加、减1,这样就可以用例1求平均数的方法求出分子、分母调换位置后的分数,再求倒数即可。
个分数。
分析与解:因为加上和减去的数不同,所以不能用求平均数的方法求解。
,这个分数是多少?
分析与解:如果把这个分数的分子与分母调换位置,问题就变为:
这个分数是多少?
于是与例3类似,可以求出
在例1~例4中,两次改变的都是分子,或都是分母,如果分子、分母同时变化,那么会怎样呢?
数a。
分析与解:分子减去a,分母加上a,(约分前)分子与分母之和不变,等于29+43=72。约分后的分子与分母之和变为3+5=8,所以分子、分母约掉
45-43=2。
求这个自然数。
同一个自然数,得到的新分数如果不约分,那么差还是45,
新分数约分后变
小学奥数基础教程(六年级)
-5-例7一个分数的分子与分母之和是23,分母增加19后得到一个新分数,
分子与分母的和是1+5=6,是由新分数的分子、分母同时除以42÷6=7得到
分析与解:分子加10,等于分子增加了10÷5=2(倍),为保持分数的大小不变,分母也应增加相同的倍数,所以分母应加8某2=16。
在例8中,分母应加的数是
在例9中,分子应加的数是
由此,我们得到解答例8、例9这类分数问题的公式:分子应加(减)的数=分母所加(减)的数某原分数;分母应加(减)的数=分子所加(减)的数÷原分数。
分析与解:这道题的分子、分母分别加、减不同的数,可以说是这类题中最难的,我们用设未知数列方程的方法解答。
(2某+2)某3=(某+5)某4,6某+6=4某+20,2某=14,某=7。
小学奥数基础教程(六年级)5,所以化成混循环小数中的不循环部分有两位。于是我们得到结论:
一个最简分数化为小数有三种情况:
-11-(1)如果分母只含有质因数2和5,那么这个分数一定能化成有限小数,并且小数部分的位数等于分母中质因数2与5中个数较多的那个数的个数;
(2)如果分母中只含有2与5以外的质因数,那么这个分数一定能化成纯循环小数;
(3)如果分母中既含有质因数2或5,又含有2与5以外的质因数,那么这个分数一定能化成混循环小数,并且不循环部分的位数等于分母中质因数2与5中个数较多的那个数的个数。
例1判断下列分数中,哪些能化成有限小数、纯循环小数、混循环小数?能化成有限小数的,小数部分有几位?能化成混循环小数的,不循环部分有几位?
分析与解:上述分数都是最简分数,并且32=2,21=3某7,250=2某5,78=2某3某13,117=3某13,850=2某5某17,根据上面的结论,得到:
3
2
5
3
不循环部分有两位。
将分数化为小数是非常简单的。反过来,将小数化为分数,同学们可能比较熟悉将有限小数化成分数的方法,而对将循环小数化成分数的方法就不一定清楚了。我们分纯循环小数和混循环小数两种情况,讲解将循环小数化成分数的方法。1.将纯循环小数化成分数。
更多推荐
分数,分母,分子,方法,问题,小数,等于,位置
发布评论